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Abstract In the Bay of Biscay and the English Channel, in
situ observations represent a key element to monitor and to
understand the wide range of processes in the coastal ocean
and their direct impacts on human activities. An efficient way
to measure the hydrological content of the water column over
the main part of the continental shelf is to consider ships of
opportunity as the surface to cover is wide and could be far
from the coast. In the French observation strategy, the
RECOPESCA programme, as a component of the High

frequency Observation network for the environment in coastal
SEAs (HOSEA), aims to collect environmental observations
from sensors attached to fishing nets. In the present study, we
assess that network using the Array Modes (ArM) method (a
stochastic implementation of Le Hénaff et al. Ocean Dyn 59:
3–20. doi: 10.1007/s10236-008-0144-7, 2009). That model
ensemble-based method is used here to compare model and
observation errors and to quantitatively evaluate the perfor-
mance of the observation network at detecting prior (model)
uncertainties, based on hypotheses on error sources. A refer-
ence network, based on fishing vessel observations in 2008, is
assessed using that method. Considering the various seasons,
we show the efficiency of the network at detecting the main
model uncertainties. Moreover, three scenarios, based on the
reference network, a denser network in 2010 and a fictive
network aggregated from a pluri-annual collection of profiles,
are also analysed. Our sensitivity study shows the importance
of the profile positions with respect to the sheer number of
profiles for ensuring the ability of the network to describe the
main error modes. More generally, we demonstrate the capac-
ity of this method, with a low computational cost, to assess
and to design new in situ observation networks.
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1 Introduction

The extent and quality of coastal observing systems have been
fluctuating with improvements of sensors and platforms, and
with the availability of dedicated funding. Despite the small
number of regions with sustained coastal observations, the
infrastructures for coastal environment monitoring represent
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a significant contribution to the Global Ocean Observing
Systems. Indeed, close to the coast, the amount of needed ob-
servations increases due to the wide range of spatial and tempo-
ral scales to monitor (e.g. tide impact, river plumes, exchanges
between open and coastal ocean) and their direct impacts on
human activities. In addition, coastal ocean monitoring is be-
coming a major goal for public authorities in an effort to predict
and mitigate various types of events. However, since a wide use
of satellite data is limited in coastal areas (due for instance to
lack in time repetitivity or to the presence of the coast in the case
of altimetry measurements), in situ (e.g. moorings, gliders) or
short range remotely sensed data (e.g. HF Radar) are then the
most reliable source of information. Let us also cite the need for
integrated approaches, optimally and synoptically combining
undersampled and fragmented observations with models to
monitor coastal ocean features and their evolutions.

The usual approach to design and optimize these networks
is to consider our knowledge from the regions of deployment
and the processes driving the dynamics in this area. Since the
aim is to objectively define the best network in a region gen-
erally only partially known, numerical models usually play an
important role in the approaches. One can decide to assimilate
virtual data from the targeted observing system in the frame-
work of the so-called OSSE (BObserving System Simulation
Experiment^) approach (e.g. Alvarez andMourre 2014; Lea et
al. 2014; Halliwell et al. 2014) and analyse how much of the
model errors are constrained. However, this valuable method
is computationally expensive and depends on whether an
agreed-upon data assimilation system already exists in the
considered region. A recent method (Le Hénaff et al. 2009),
retained for this study and based on stochastic modelling,
allows exploring a wide range of networks for different time
periods. Based on a notion akin to the array modes as defined
by Bennett (1985, 1990), the so-called ArM (Array Modes)
methodology can be applied to evaluate the objective perfor-
mance of a network design at detecting prior errors without
having to run a fully assimilated system.

The aim of the present study is to assess the performance of
an existing and highly time-varying in situ network in the Bay
of Biscay and the English Channel (Fig. 1a). This network—
RECOPESCA (Leblond et al. 2010)—is based on opportunity
fishing vessels with fishing nets instrumented using tempera-
ture, salinity, pressure and some turbidity sensors. Regions of
deployment (Bay of Biscay and English Channel) are located
in the eastern part of the North Atlantic Ocean between the
Spanish, French, British and Irish coasts. RECOPESCA is a
component of the High frequency Observation network for the
environment in coastal SEAs (HOSEA) operated by IFREMER
(Institut Francais de Recherche Pour l’Exploitation de La
MER—French Research Institute for Exploitation of the Sea).
The irregular and steep bathymetry in this region (narrow 30 km
continental shelf in the South, wide 180 km shelf off Brittany)
combined with the seasonality wind regimes (Isemer and Hasse

1985; Pingree and Le Cann 1989, 1990) and significant, season-
related river discharges (e.g. Ferrer et al. 2009; Lazure and Jégou
1998; Lazure et al. 2006) drives a wide range of processes (e.g.
slope currents, mesoscale eddies, shelf circulation—Charria et
al. 2013) interacting in a region strongly influenced by tides (e.g.
Pichon and Correard 2006; Pairaud et al. 2008, 2010). Over the
continental shelf in the Bay of Biscay, the dynamics is mainly
driven by barotropic tides dominant in the northern part of the

Fig. 1 a Map and bathymetry of the Bay of Biscay and the English
Channel (Seine R., Loire R. and Gironde R. are rivers). b, c
RECOPESCA profiles collected in 2008 and 2010 as a colour-coded
function of time of year
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domain and density gradients mainly driven by river plumes
with regions of freshwater influence spreading over most of
the shelf in the winter. Clearly, the locations visited by the fish-
ing fleet only allow to capture part of those processes, depending
on the time of year, but also on external factors such as weather
conditions and stock management.

The paper is organized as follows: the RECOPESCA net-
work, in a reference configuration, as well as for some ex-
tension scenarios, is described in Section 1; Section 2 is
dedicated to a brief description of the ArM methodology
formalism. The performance analyses for the reference net-
work and for the extended scenarios, respectively, are
discussed in Sections 4 and 5, and conclusions are drawn
in Section 6.

2 RECOPESCA network

The RECOPESCA project provides an observation network,
based on voluntary vessels, of the fisheries activity (effort
and catches) and the environment. These measurements con-
tribute to the evaluation of exploited resources and to the
collection of new environmental data, as water temperature,
salinity and turbidity (oxygen and fluorescence sensors are
under development). Since 2007, the system has been wide-
ly deployed on an increasing number of voluntary vessels
after a test period initiated in 2006. Specific sensors are
implemented on the fishing gears and aboard a sample of
vessels representative of the whole fishing fleets. These sen-
sors have been developed to be suitable for conditions and
constraints aboard fishing vessels (tough enough to be fixed
up on fishing gears, self powered, autonomous, affordable,
able to run without any intervention of the fishermen neither
causing trouble for their fishing activity). The time of the
nets in water can be variable. However, the position of the
vertical profiles is synchronized with the ship’s position
when the sensor is close enough to the station on board,
and then it remains independent of the time of the net under
water. For the time spent in the lower water column, another
product (not used in the present study) is existing, called
Time Series, which is representing a time series of measure-
ments at depth. This product is particularly interesting when
the probes are fixed on crab boat traps.

In the present study, we are focusing on sensors for phys-
ical environmental data profiling temperature, pressure, salin-
ity and turbidity. Data are collected at the bottom and along the
water column. They are transmitted to a data station on board
before sending measurements to main databases on land via
the GPRS network when available. This data flux is then close
to real time (depending the GPRS network and following the
automatic qualification), and it allows monitoring the hydro-
logical structures with a vertical sampling around 0.2 m.
Figure 1 displays the positions of profiles collected in 2008

(Fig. 1b) and 2010 (Fig. 1c). During these years, the number
of valid profiles was increasing with 2395 profiles in 2008,
3388 profiles in 2009 and 5317 profiles in 2010 to reach 6756
profiles in 2013 and 4760 profiles in 2014. Thirty-three thou-
sand two hundred seventy-six profiles have been collected
between 2006 and 2014. Following targeted fishing areas,
profiles are mainly located south of Brittany, in the Celtic
Sea and in the English Channel in 2008 (Fig. 1b). In 2010,
an increase in the number of collected profiles is observed
with an extent of the areas covered by equipped fishing ves-
sels. Indeed, data along the southwest French coast have been
collected as well as new data further offshore in the Celtic Sea
(Fig. 1c). The time of the nets in water can be variable.
However, the position of the profile is synchronized with the
ship’s position when the sensor is close enough to the station
on board, and then it remains independent of the time of the
net under water. For the time spent at depth, there is another
product (not used in the present study), called Time Series,
which is representing a time series of the measurements at
depth. This product is particularly interesting when the probes
are fixed on crab boat traps.

The spatial and temporal distribution of RECOPESCApro-
files allows exploring the main features of the vertical hydro-
logical structures and their variability (Leblond et al. 2010;
Charria et al. 2014). Indeed, large number of profiles, south
of Brittany, allows highlighting interannual evolutions in tem-
perature since 2007 (Charria et al. 2014). Further investiga-
tions are in progress to extend this analysis in salinity and in
other subregions in the Bay of Biscay and the English
Channel.

3 Methodology

3.1 Towards a criterion of array performance

In the following, we will use the following paradigm: a
Bgood^ array, regardless of its cost, is an array that can de-
tect—and help correct—errors of a prior (i.e. pre-existing)
estimate. This estimate can be from a model, a climatology
or a null estimate if nothing is known beforehand.

A variant of our approach has been described in detail by
Le Hénaff et al. (2009); it will be recalled briefly below. For
the calculations carried out in this paper, we will adopt a for-
malism (hereafter ArM) based on the very same idea, but
where the stochastic nature of error estimates is explicitly
taken into account (De Mey 2014, personal communication,
implemented and available in the SANGOMA Tools http://
www.data-assimilation.net/Tools/). Although no data
assimilation will be carried out here, we will use the unified
notations of data assimilation as in Ide et al. (1997).

Let us define x, an augmented state vector of dimension n
over the time interval of interest (it can be noticed that this is
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an augmented state vector—everything that will be shown
below includes time as well as space in the definition of ob-
servations and prior state estimate). n is of the order of
1.7×107 in our case of study.

Let us define yo, the vector of observations of dimension p
verifying yo=H(xt) + ε, with xt the Btrue^ state, H( ) an obser-
vation operator (not necessarily linear, but for the sake of
clarity we will use a linearized operator H), and Gaussian
measurement error ε∈N(0,R), withR being the observational
Error Covariance Matrix (hereafter ECM). p is of the order of
1×105 in our case of study.

Our question is the following: how can we characterize the
performance of an observational array as defined by (H, R) in
such a way that we can compare the performance of one array
to another?

Let us assume that we have a prior estimate of x and of its
associated error statistics (if not, any observational array will
bring valuable information proportionately to its cost), i.e. x-
f=xt+η, with η∈N(0,Pf), Pf being an estimate of the prior
ECM (we will come back later to how we can get such an
estimate). ε and η are assumed to be independent random
vectors.

Let us consider the incremental Binformation^ brought in
by the array on top of the prior. (Part of this is new informa-
tion, but part is noise.) To do that, we introduce the innovation
vector and its second-order statistics:

d≡yo−y f ¼ yo−H x f
� � ¼ H xtð Þ þ ε−H xt þ ηð Þ≈ε−Hη: ð1Þ

ddT
� � ¼ R þHP fHT : ð2Þ

We reach a coarse but intuitive Bglobal^ criterion of array
performance:

& If observational errors (R) dominate in Eq. (2), then most
of the discrepancies are attributable to observational error,
and observations are not being very useful.

& If prior state errors (HPfHT), commonly called
Representer Matrix (hereafter RM) dominate, then most
of the discrepancies are attributable to prior state errors,
and observations can be expected to be useful at identify-
ing and correcting the prior state errors.

We now endeavour to formalize that global criterion so that
we can use it to compare whole arrays to each other. Le Hénaff
et al. (2009) do this by first projecting Eq. (2) and the RMonto
a space where the observational ECM becomes diagonal:

R−1=2 ddT
� �

R−1=2 ¼ Iþχ

χ ¼ R−1=2HP f HTR−1=2 : ð3Þ

In a second step, they formalize the above criterion by
comparing the eigenspectrum σ of χ to the eigenspectrum of

I, which is trivial and equal to 1. The eigenvectors μ of the
projected RM χ are called array modes:

χ ¼ μσμT : ð4Þ

Therefore, in first instance, the intuitive criterion above
comes back to counting how many eigenvalues in Eq. (4) lie
above 1. The corresponding array modes will be the
Bdetectable^ error modes above the observational noise floor.
Note that the observational ECM does not need to be diago-
nal: correlated errors can be considered as shown in Le Hénaff
et al. (2009). The number of eigenvalues above 1 can be used
to compare whole arrays to each other; this should however be
completed by the examination of array modes, since the error
degrees of freedom detected by two very different arrays can
also widely differ in nature.

Extending the classic notion of representers (the influence
functions of individual observations), Le Hénaff et al. (2009)
also introduce modal representers, which project array modes
onto the state (physical) space and can be used to examine the
theoretical correction which would be applied by a particular
array mode if assimilation took place in a further step:

ρμ ¼ P fHTR−1=2μ: ð5Þ

3.2 Stochastic implementation

Let us now assume that we have a way of generating m
realistic prior error samples, e.g. from stochastic modelling
or an ensemble filter. By Brealistic^, we mean that we be-
lieve that these samples are indeed representatives of the
errors of our prior estimate. In Le Hénaff et al., the χ
matrix was also calculated from ensemble statistics using
pre-calculated ensemble members. However, here, we wish
to directly take into account the stochastic generation of
prior errors in the formalism. What is described below is
the version of the ArM algorithm which is available in the
SANGOMA tools.

Let us define our generator—a matrix of m-centred error
samples, Af, of dimension n×m. The prior ECM is approxi-

mated from the samples as P̂
f ¼ 1

m−1A
fA f T . The projected

RM χ is approximated by:

χ̂ ¼ 1

m−1
R−1=2HA f

� �
R−1=2HA f

� �T
¼ SST ð6Þ

where S¼ 1ffiffiffiffiffiffi
m−1

p R−1=2HA f contains the scaled ensemble ob-

servation anomalies (this is the same S matrix as in Sakov et
al. 2010). From Eq. (6), it follows that the eigenvalue problem
Eq. (4) can now be expressed as a singular value problem:

& The eigenspectrum σ is estimated as the square of the
singular value spectrum of S.
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& The array mode estimates μ̂ are the singular vectors of S.
& The modal representer estimates are ρ̂μ ¼ 1ffiffiffiffiffiffi

m−1
p AST μ̂.

3.3 Stochastic modelling

The stochastic generator described above can for instance be
built by randomly perturbing the error sources of the model
(e.g. Auclair et al. 2003; Mourre et al. 2004; Mourre and
Ballabrera-Poy 2009).

Here, we used an ensemble of 50 perturbed simulations
with the MARS3D model (Lazure and Dumas 2008; Duhaut
et al. 2008) generated as a combined response to the following
sources of errors:

& Uncertainties in the atmospheric forcings, which have
been modelled through a dynamical 50-member ensemble
of Gaussian-perturbed atmospheric fields (pressure at sea
level, 10 m-wind, surface heat fluxes, 2 m-temperature)
provided by ECMWF (Buizza 2006);

& Uncertainties in specific model parameters, namely the
bottom friction coefficient, the turbulent-closure coeffi-
cient and the light-extinction coefficient, which were
slightly perturbed following a Gaussian distribution.
Those parameters were retained since they have been
shown to have a significant impact on the model results
and are—at least—partly uncorrelated (Friedrichs 2001;
Huret et al. 2007).

The MARS3Dmodel configuration is running with a 4-km
spatial resolution and 40 sigma vertical levels. The resulting
ensemble has been generated for the year 2006. As described
in Section 3.2, we considered anomalies with respect to the
ensemble mean. Figure 2 illustrates the statistical consistency
of the ensemble over the spring period, which has been first
assessed against hourly sea surface temperature (SST) fields,
derived from the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) onboard Meteosat Second Generation
(MSG) (EUMETSAT 2006).

First, it can be stated from Fig. 2a, b that the ensemble
mean is statistically very similar to the unperturbed reference
simulation. This is an indication that the resulting ensemble
distributions—and the associated model error structures—are
close to a Gaussian distribution. However, as it has been
discussed by Quattrocchi et al. (2014), investigating statistical
moments of orders 1 to 4, departures from linear/Gaussian
response to perturbations are likely in ensemble simulations.
In the present study, this Gaussian property for the ensemble
distribution is not necessary. Secondly, one can note that the
model-observation deviations (Fig. 2a, b) are globally coher-
ent with the model error structures as Bseen^ by the observa-
tions (Fig. 2c), for instance in front of Loire river and on

Aquitaine Shelf. Local discrepancies are nevertheless visible
(e.g. in western English Channel). Eventually, Fig. 2d gives an
insight into the mean spatial distribution of the SST model
error structures. Those structures are mainly localized on the
Biscay Shelf and in the vicinity of the river estuaries, with an
amplitude of the order of 0.3 °C. They a priori correspond to
the signature of the atmospheric forcing, the turbulent-closure
coefficient and the light-extinction coefficient uncertainties.
Some error structures are also noticeable in the western
English Channel and are associated with the Ushant thermal
front (thermal tidal front located west of Brittany during
stratified seasons, Le Boyer et al. 2009) dynamics. These error
developments are probably caused by the perturbations of the
bottom-friction coefficient, which indeed influenced the
mixing of the water column, and the closure-turbulence coef-
ficient. It is also likely that the atmospheric forcing perturba-
tions have an impact on the mixing of the water column in the
area and then on the generation of the error growth in the
vicinity of the Ushant thermal front. As a general remark,
the discrepancies that are noticeable between Fig. 2c and d
illustrate the importance of the spatiotemporal measurement
sampling in the specific problem of model error observability.

The average bias between simulation and observation (not
shown—on average −0.11 °C in spring) does not impact the
ArM method as the analysis aims to detect the efficiency of
the observing system to detect and/or to constrain the system
variability (using for example an ensemble variance).

3.4 Observation error

The ArM method requires an estimate of the observational
ECM. Observational error is classically defined from the sum
of two contributions: the measurement error, related to the sen-
sor accuracy, and the representativity error, which is usually the
result of small scale information in observations being incor-
rectly represented in the model, or due to the sampling protocol.

The accuracy of the autonomous temperature data logger
(STPS probes developed by NKE Instrumentation1) is equal
to 0.05 °C. We have no information as to whether the mea-
surement error might be correlated with time and/or space.

Regarding the representativity error, we estimate that
0.25 °C is a realistic magnitude. Indeed, one can assume
that this error term is representing the uncertainty in the
observation linked to the sampling with regard to the
targeted processes. In the present case, it will be mainly
related to the position of the profile. In a macrotidal
region, currents can be intense and variable, and depend-
ing on the length of the fishing net, the profile position,
given by the ship position, can be inaccurate. Then, close
to the thermocline depth, temperature gradients can have

1 http://www.nke-instrumentation.com/oceanography/data-loggers/
multipameter-probesfa4d.html
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a large spatiotemporal variability. For example, at a giv-
en depth and a given position, temperature variations can
be larger than 2 °C during few minutes of measurements
(Cuypers et al. 2011). In another example close to shelf

break (Xie et al. 2013), temperature variations close to
the thermocline are similar. Considering these variations,
0.25 °C appears as a reasonable representativity error
estimate in the studied region.

Fig. 2 Statistical consistency of
the SST ensemble modelling in
May 2006. a Temporal RMS error
of the reference simulation (i.e. no
perturbation applied) with regard
to SEVIRI SST observations. b
Temporal RMS error of the
ensemble mean with regard to
SEVIRI SST observations. c
Time-averaged ensemble stan-
dard deviation computed on the
SEVIRI observation grid. d Time-
averaged ensemble standard de-
viation computed on the model
grid

Fig. 3 Location of
RECOPESCA profiles relative to
the four studied periods—
units: elapsed days since the first
day of each period
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For the present study, given the above, a diagonal ECM
with temperature error standard deviation equal to 0.3 °C has
been chosen.

4 Assessment of the reference network

4.1 Introduction

A Breference^ configuration of the RECOPESCA network
has been studied during four-time periods in 2006, represen-
tative of the seasonal variability in the Bay of Biscay and the
English Channel:

& January 16–February 2: winter period
& May 3–May 25: spring
& July 4–July 18: summer
& October 23–November 12: autumn

For these periods, we consider the locations of the 2008
temperature measurements (as it is the first year with a signif-
icant number of RECOPESCA observations) for testing the
ability of the equivalent network to detect model error modes
from the simulation runs. As a reminder, the ArM methodol-
ogy only requires the locations and ECM of the observations,
not the sampled measurements. These four sets of profiles are

displayed in Fig. 3. The number of profiles ranges from 106
profiles (in autumn) to 126 profiles (in spring) except in the
winter with very few profiles considered (only 7 profiles).
Note that the distribution in time between the four seasons
of the profile range has been improved during recent years.

For each period, a common analysis protocol has been
applied:

1. First, an analysis of theMARS3Dmodel error subspace is
performed: the ensemble standard deviation—as a proxy
of the model error–is computed over the ensemble of 50
perturbed simulations, and over the whole period. The
main space-time features of this model error proxy are
highlighted, with a possible focus on areas of interest.

2. This model error proxy is then interpolated (in space and
time) at the profile locations, in order to give an insight
into the model errors projected into the observational
space. As a first approximation, the observations located
where the model error is larger than 0.3 °C should be
efficient in terms of detecting the model error structures.

3. ArM analysis: Performances of the RECOPESCA net-
work are then analysed, in terms of detection of the de-
grees of freedom (hereafter d.o.f.) of the model error sub-
space: the array modes and associated spectrum, as well
as modal representers (cf. Section 3.2), are computed and
detailed, with a focus on subareas of interest.

Fig. 5 a Six-meter depth horizontal section of the model temperature
ensemble standard deviation (unit: °C) for May 10, 2006, over the
Armorican shelf. The white dashed line indicates the position of the

vertical section. b Corresponding East-West vertical section at 47.35° N
of model ensemble variance. Location of the available profiles on the
whole period (white circles) and at the current date (red spots)

Fig. 4 Model sea surface
temperature ensemble standard
deviation (unit: °C) for (a) May
10 and (b) May 14, 2006
(horizontal section at 6 m depth).
Location of available profiles
during the whole period (white
circles) and at the current date
(red spots)
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4. The locations of the profiles with the most significant
signature in the detected array modes are identified.
Given a detected array mode, these profiles are asso-
ciated with at least one value in the vertical which is

larger than one standard deviation of all values in the
array mode. By construction, these profiles shall
have the most significant signature in the correspond-
ing modal representer structure; moreover, these

Fig. 6 (a) Six-meter depth hori-
zontal section and (b) 47.35° N
West-East vertical section of the
reference temperature field, for
May 10, 2006. The white dashed
line indicates the position of the
vertical section. The white verti-
cal line in (a) indicates the box
plotted in Fig. 5a. Location of the
available profiles during the
whole period (white circles) and
at the current date (red spots)

Fig. 7 Left column: time evolution of the 6-m depth horizontal section of
the model temperature ensemble standard deviation (unit: °C) from May
10 to 16, 2006, on western English Channel. The white dashed line
indicates the position of the vertical section. Right column: corresponding

North-South vertical section at 5° W of model ensemble standard devia-
tion. Location of the available profiles on the whole period (white circles)
and at the current date (red spot)

574 Ocean Dynamics (2016) 66:567–588



profiles capture, by definition, the most Bdetectable^
model error mode structures above the observational
noise floor. Therefore, they would potentially have
the most significant impact, in terms of model cor-
rection, if they were assimilated in the presence of
discrepancies between their sampled measurements
and the equivalent model proxy. These profiles are
then called Bmodal profiles^ in the following
sections.

From this notion of modal profiles, we define an
additional diagnostic for the discrimination of various
RECOPESCA configurations, with the aim of proposing
an object ive not ion of eff ic iency for a given
RECOPESCA array. Such an efficiency indicator is de-
fined as the ratio e f ¼ nMP

nP
of nMP, the population of

modal profiles, to nP, the whole population of available
profiles. This indicator is of particular interest for the
analysis of the RECOPESCA extension scenarios, which

are based on a collection of several years of profile
sampling (cf. Section 5.2).

4.2 Detailed description of the spring season

Following the model error distribution—characterized by
larger ensemble variance in spring and summer—and the
availability of in situ profiles—which is higher during
spring—the spring conditions have been put under focus for
this assessment experiment of the RECOPESCA network.
These spring conditions are thus fully detailed in the following
sections. Other seasons are shortly described in Section 4.3.

4.2.1 Model error subspace

During the spring season, the modelled error structures
(Fig. 4) are mainly located over the Armorican and
Aquitaine shelves, in the eastern part of the northern Spanish
coast, as well as in the vicinity of the Ushant thermal front.

Fig. 8 Representer matrix
spectra relative to the four
periods: winter, spring, summer
and autumn. The top figure is
representing a zoomed spectrum
for values between 10−3 and 105,
and the bottom figure is the
second part of the spectrum for
small values (between 10−25 and
10−3) covering a larger range of
values. Spring (green) and
summer (purple) curves are very
close and overlap for most of the
modes

Fig. 9 First (a) and second (b)
modal representers (6-m-depth
horizontal section) for May 14,
2006 (unit: °C). Location of the
profiles (black circles) and the
modal profiles (red spots) at this
date
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The model uncertainties over the Bay of Biscay shelf are
mainly located in regions under freshwater influence (mainly
Loire and Gironde rivers) and have been shown to be gener-
ated by the perturbations of atmospheric forcings and extinc-
tion coefficient (Heyraud et al. 2011). In the vicinity of the
Ushant front, these model errors are mainly generated by the
perturbations of bottom-friction and turbulence-closure
coefficients.

During this period, a total of 126 profiles is available and
can be gathered in four subsets (Fig. 3). A first one is located
in the eastern part of the English Channel, where profiles are
mainly sampled at the very beginning of the measurement
period. In this area, the model errors remain very low (under
0.05 °C), so that this first group of profiles does not sample
any significant model error structures. A second set of profiles
is located in the western part of the English Channel, mostly in
the middle and at the end of the measurement period. This set
of profiles provides an efficient sampling of the model error
structures in the area of the Ushant thermal front. A third
group of sample profiles is located on the Armorican shelf
and almost covers the whole period. Due to their wide
space-time coverage, these profiles provide an efficient detec-
tion of the model error structures that develop in this area. The
last set of profiles is localized above the Armorican shelf slope
and does not sample significant model error structures.
Consequently, considering the capability of the network to
sample the model errors during this period, a focus is set on
the Armorican shelf and on the western English Channel dur-
ing the period from May 10 to 16, 2006.

Figure 5 shows the development, on the Armorican Shelf,
of an error cell that mainly extends in the inner shelf above
40 m depth. Maximum values, larger than 0.3 °C, are mainly
located in the first 10 m, but a second local maximum is
reached around 20 m depth. This error cell is associated with
a warming of the upper water-column in the area, inducing a
deepening of the thermocline (Fig. 6); this error structure is
thus thought to be mainly related to the perturbations of the
light penetration and atmospheric forcings in the area. A sig-
nificant number of profiles are adequately scattered in this
error cell: from May 10 to 16, 2006, 27 profiles could poten-
tially provide an efficient sampling of the error structure (see
red dots in Fig. 5 for May 10, 2006).

In the western English Channel, an error cell is observed to
extend horizontally and vertically in the vicinity of the Ushant
thermal front (Fig. 7—north-west of Brittany). During this
period, the error structure, shaped like an East-West horizontal
layer, rises up to the surface. The vertical extension varies
between 10 and 20 m depth, with maximum values around
0.3 °C. From May 10 to 16, 2006, several profiles are

localized in the error structure and will be shown to have a
significant impact on its detection by the associated network.

4.2.2 ArM analysis

In this section, the array modes and the associated spectrum,
as well as the modal representers, are explored to assess the
performances of the reference network to detect the model
error structures previously described in Section 4.2.1.

During this spring period, the profile population of the
reference RECOPESCA network is adequately scattered in
time and space and is then able to detect 29 d.o.f. of the model
error subspace (Fig. 8), amongst the 50 detectable d.o.f. (the
rank of the system is imposed by the dimension of the ensem-
ble of perturbed simulations, i.e. 50). The first and second
modes are dominant, explaining more than 51 and 10 % of
the system variance. Moreover, in both areas under focus, the
first and second modal representers provide an efficient de-
scription of the main model error structures:

1. On Armorican shelf, the time development of the error
cell both in horizontal and vertical dimensions is well
described by the first and second representers. The first
one is able to reproduce the vertical two-layer structure of
the error cell, and the second one brings some refinements
in this vertical structure, especially towards the coast
(Fig. 10).

2. In the western English Channel, both representers provide
a satisfying description of the space-time development of
error structures associated with the Ushant thermal front
perturbations: the error structure, shaped like an East-
West horizontal layer, is efficiently detected by one modal
profile associated with the first representer. The second
representer, while associated with no modal profile in
the western English Channel, also provides a satisfying
description of the Ushant thermal front error structure. In
particular, both representers are able to reproduce the rise
of the error layer up to the surface (Fig. 11).

Also note that the efficiency indicator e f (cf. Section 4.1),
associated with the first and second modal representers, can
reach significant level: for instance, onMay 14, 2006, the first
and secondmodal representers are associated with, respective-
ly, five and four modal profiles, amongst the whole eight pro-
files available for this date (Fig. 9); this leads to efficiency
values of, respectively, 0.625 and 0.5, reflecting a significant
efficiency of the network at that particular time.

Therefore, the RECOPESCA network, in its reference con-
figuration, is shown to provide an efficient detection (29 mod-
al profiles for the first modal representer over 126 profiles—
e f =29/126=0.23) of the model error subspace d.o.f. during
the period from May 3 to 25, 2006.

�Fig. 10 East-West vertical section of the first and second modal
representers for (a) 10, (b) 12, (c) 14, and (d) 16 May 2006, at 47.4° N
on the Armorican shelf (unit: °C)

Ocean Dynamics (2016) 66:567–588 577



Fig. 10 continued.

578 Ocean Dynamics (2016) 66:567–588



4.3 Extension of the analysis to the other seasons

Under winter, summer and autumn conditions, the same pro-
tocol, as defined in Section 4.1, has been applied. A synthesis
of the main results is provided in the following section.

4.3.1 Model error subspace

By nature, the model sensitivity to the different perturbed
parameters (as a reminder: the atmospheric forcing, the
bottom-friction coefficient, the turbulence-closure coefficient
and the light extinction coefficient) is linked to the water col-
umn stratification conditions and the river outflow regimes.
As a result, the distribution of the model uncertainties appears
to vary both seasonally and spatially.

In winter, the 4D (longitude, latitude, time, depth)
ensemble variance is generally small (lower than
0.15 °C) except in the vicinity of main rivers (Seine,
Loire, Gironde, and Adour) where the error amplitude
ranges from 0.2 to 0.4 °C. These limited-extension cells
of uncertainty are mainly generated by the perturbations
in the turbulence-closure coefficient and the atmospheric
forcings. During this period, no significant error structure
is actually sampled, since (1) only a few profiles are
available and (2) those profiles are not located in the
error cells associated with uncertainties in the river’s
plume dynamics (not shown).

During the summer, the maximal ensemble dispersion
is mainly localized in the first 40 m of the water column
over the Bay of Biscay shelves and in the western
English Channel in the vicinity of the Ushant front. In
those areas, the model error is about 0.4 °C. A total of
131 profiles is available to sample the model error sub-
space. Those profiles are distributed amongst three sets
(Fig. 12): in the eastern English Channel (set no. 1), in
the western English Channel close to the Ushant front
(set no. 2) and over the Armorican shelf in south of
Brittany (set no. 3). Set no. 1 does not sample any sig-
nificant error structures, while set no. 2 provides an ef-
ficient detection of the model error structures that grow
in this area; in particular, the 20-m-depth error layer is
accurately detected by these profiles. Set no. 3 covers the
whole studied period, and the associated profiles are ad-
equately scattered in space and time to be able to detect
the growth of model uncertainties in this area.

Finally, in autumn, the model error structures appear
to be more heterogeneous than during the other seasons.
At the surface, uncertainties are mainly located above the
continental slope and the abyssal plain. The 106 profiles
available during the period do not sample any significant
model error structures, except for a few profiles over the
Armorican shelf (not shown).

4.3.2 ArM analysis

The representer matrix spectrum, presented in Fig. 8 for the
four analysed periods, clearly confirms that the performances
of a RECOPESCA network are related to the spatiotemporal
profile distribution. Better performances are associated with
networks including wider spatiotemporal profile distribution.
Indeed, in winter, the seven poorly located profiles do not
allow to detect any error modes (all eigenvalues are lower than
1). On the other hand in spring, summer and autumn, the
number of profiles, as well as their space-time dissemination,
are more favourable. In those configurations, the network al-
lows the detection of 22 and 29 model error modes (amongst
the 50 detectable), respectively, in autumn and in spring/
summer.

In summer and autumn, the first mode dominates (44 and
56 % of the explained variance, respectively). The second and
third modes are closer in terms of representativeness with
smaller explained variances (13.5 and 11 % for the second
and third mode in autumn, and 20 and 9 % in summer).
Regarding the associated modal representers, the first, second
and third ones are, respectively, associated with 26, 14 and 41
modal profiles amongst the 131 available profiles in summer.
In autumn, the ratio is of 21, 27 and 29modal profiles over the
whole population of 106 available profiles. Based on the ded-
icated efficiency diagnostic, the RECOPESCA network ap-
pears to be slightly more efficient in autumn rather than in
summer, since the ratio of the Bmodal profile population^ over
the Bwhole profile population^ is larger in autumn.

Furthermore, the space-time distribution of the modal pro-
files over the modal representers (Fig. 13) can give an insight
into the network ability to detect some model error structures
in a privileged way: for instance, in summer, one can notice
that the modal profile population associated with the first
mode (Fig. 13a) detects the well-established structures over
the Armorican shelf, while modal profiles associated with the
second mode (Fig. 13b) constrain the more variable error
structures in the western English Channel. This distinction
can be explained by the fact that the model error growth in
the western English Channel is characterized by a larger
space-time variability than the one over the Armorican shelf;
thus, the network would detect at first these Bstationary^ error
structures on Armorican shelf then detect the more variable
error cells in the western English Channel.

5 Extension scenarios

5.1 Introduction

In the first part of the study, the ArM method was implement-
ed to assess the performances of the RECOPESCA network in
its reference configuration. This configuration was based on a
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set of temperature profiles collected during the year 2008.
Although the general performances of this reference network
appear to be satisfying and promising, some lacks have been
highlighted in the spatiotemporal distribution of the winter
and autumn sets of profiles. We thus explore in this section
the contributions of two extension scenarios for the reference
RECOPESCA network. Note that the analysis protocol is the
same as the one applied in Section 4.1, i.e. based on the de-
tection and the analysis of the degrees of freedom of the model
error subspace. Nevertheless, for clarity reasons, the focus will
be on the spring season, while synthetic results will be pro-
vided for the other seasons.

5.2 Description of the extension scenarios

The extension scenarios are displayed in Fig. 14. The
first extension scenario (hereafter BSC1^) is based on
the set of profiles sampled during the year 2010; the
second one (hereafter BSC2^) is built on the collection
of profiles sampled during the years 2006 to 2011. This
collection reflects an expected coverage in a near. A first
overview shows that the number of measured profiles
has been strongly increased with respect to the reference
scenario. The space-time sampling is also extended, even
if the locations of the profiles remain limited to the con-
tinental shelf, since they depend on the localization of
the RECOPESCA vessel’s fishing areas.

5.3 Detailed results

5.3.1 Spring period

In spring, the SC1 network is composed of 296 profiles
mainly distributed between three sets (Fig. 14): a first
one is localized on the Celtic Shelf (cf. Fig. 1), a second
one on the edge of the Celtic slope and the last one over the
Armorican shelf. Two smaller groups of profiles can also
be identified in the middle of the English Channel, and
near the Gironde river mouth. The SC2 network comes
with 883 profiles, split up into six sets (Fig. 14): on the
Celtic shelf, near the Celtic slope, in the eastern English
Channel, in the western part of the English Channel, over
the Armorican shelf and close to the Landes coasts (on
Aquitaine shelf).

During this spring period, the model error growth is mainly
localized on the French continental shelf and in the western
English Channel (Fig. 15). The SC1 profiles are thus able to
mainly sample the model error structures that develop over the

Armorican shelf and near the Gironde river mouth. The am-
plitude of these Bobserved^ model errors is about 0.3 °C. The
wider spatiotemporal distribution of the SC2 allows observing
not only the model error growth over the French Continental
shelf but also the model error structures that develop in the
west English Channel.

Figure 16 displays the representer matrix spectrum for
the reference, SC1 and SC2 networks. Both SC1 and SC2
networks come with performances (in terms of model error
mode detection) greater than the reference one: they can
detect, respectively, 45 and 49 d.o.f. amongst the 50 de-
tectable ones, while the reference network can only detect
29 d.o.f.

The performances of the SC2 network are larger than
those associated with the SC1 network: if the number of
d.o.f. detected by both networks is rather similar (45 vs
49), the total spectrum energy of the SC2 network is higher
than the one associated with SC1 network, since all SC2
spectrum eigenvalues are larger than of the SC1 spectrum.
It is thus likely that the SC2 network could detect addition-
al error modes when the rank of the system exceeds 50.
Increasing the number of model ensemble simulations
would thus enhance the capability of the methodology to
discriminate networks.

Comparing with the reference network, the spectrum
of both extended networks is more distributed between
all the modes, since there is no significantly dominant
mode. We expect here that secondary modes should
bring relevant information.

The SC1 and SC2 networks are compared to the reference
one through their respective modal profiles. We note about
these following modal profiles (not shown) that:

1. All the SC1 modal profiles are localized over the
Armorican shelf, while the SC2 ones are distributed be-
tween the Armorican shelf and the western English
Channel. Indeed, it has been shown that the SC2 network
is able to detect the model error growth in the western
English Channel, where the SC1 network does not sample
this area.

2. The SC2 first representer comes with at least four times
more modal profiles than the SC1 network (296 against
34), whereas the total number of SC2 profiles is less than
three times the total number of SC1 ones (883 against
212); besides the comparison of the spectra, this confirms
that the SC2 network efficiency (0.24) is higher than the
SC1 one (0.11) regarding the detection of the model error
modes.

Regarding the studied spring period, the SC2 scenar-
io appears to be more efficient than the reference and
SC1 networks to detect the model error modes under
consideration.

�Fig. 11 North-South vertical section of the first and second modal
representers for (a) 10, (b) 12, (c) 14, and (d) 16 May 2006, at 5° W in
the western English Channel (unit: °C)
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5.3.2 Synthetic results for other seasons

For clarity reasons, the synthesis of the reference and exten-
sion configuration cross-comparison has been restricted to the
analysis of (1) the representer matrix spectrum and (2) the
efficiency-oriented diagnostics associated with the three con-
figurations under consideration.

Analysis of the representer matrix spectrum Figure 17 dis-
plays the representer matrix spectrum associated with the
reference and both extension configurations, for the win-
ter, summer and autumn periods. As for the spring peri-
od, the performances in terms of model error mode

detection appear higher for both extended networks.
Globally, the SC1 and SC2 configurations allow to detect
more model error modes than the reference scenario.
This result confirms that increasing the space-time cov-
erage of the RECOPESCA profile population is associat-
ed with better performances in terms of model error de-
tection. Nevertheless, during all seasons, the SC2 net-
work shows a larger number of detected error modes
with a limitation due to the rank of the system in sum-
mer. This limited rank thus acts as a limitation of the
capability of the methodology to discriminate between
both extended configurations, using that criterion.

Efficiency-oriented analysis In order to give a comple-
mentary insight of the extension scenario performances,
Table 1 gathers the efficiency values associated with the
reference and both extension configurations, for the three
studied periods.

The efficiency indicator provides another point of
view on the various network configuration performances.
It appears that increasing the number of profiles does not
necessarily result in greater efficiency. Indeed, since all
the additional profiles are not de facto scattered in an
optimal way, the number of modal profiles is not propor-
tional to the whole profile populations. In that context, it
is likely that a trade-off can be found between the num-
ber of profiles from the extended SC1 and SC2 net-
works, to ensure the optimal detection and description
of model error modes. Based on this indicator, we can
also notice that for all seasons, the reference network
appears as more efficient than the scenario SC1.

5.4 Conclusions on the extension scenarios

Two extended versions of the reference configuration
network have been explored in this section. The first
extension scenario (SC1) is based on temperature profiles
sampled during the year 2010. The second extension
configuration (SC2) is a collection of all available pro-
files during the period 2006–2011. Considering the

Fig. 13 First (a) and second (b)
modal representers (6-m-depth
horizontal section) for July 13,
2006. Location of the profiles
(black circles) and the modal
profiles (red spots) at this date

Fig. 12 Model error space-time interpolated on profile locations.
Position in surface (pink triangles) and at depth (coloured dots) from
July 4 to 18 July 2006
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whole studied periods, the extension scenarios logically
provide better performances than the reference one,
thanks to their wider and denser spatiotemporal coverage
of the area. During the spring, summer and autumn pe-
riods, where the reference network already has satisfying
detection ability, the network extension allows a better
capture and description of the model error subspace

variability modes. As to the tricky winter period, where
the model error growth is very episodic and limited in
space, the extended networks provide a drastic enhance-
ment of the detection performances, whereas the reference
network is not able to sample any significant model error
growth (the efficiency indicator is not relevant for this
season as the number of profiles is very small).

Fig. 14 Location of RECOPESCA profiles for the reference
configuration (left), the 2010 scenario (centre) and the 2006–2011
scenario (right), for the winter (row 1), spring (row 2), summer (row 3)

and autumn (row 4) periods. Unit: elapsed days since the first day of each
period (this date is highlighted in the blue dashed rectangle)
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When it comes to the comparison between both ex-
tended configurations, the SC2 network appears to be
more efficient than the SC1 extended configuration,
not only in terms of the number of detected modes
but also through the ability to accurately describe the
model error structures. Moreover, regarding the number
of profiles, the SC2 network has been shown to provide
more efficient profiles than the SC1 one, in significant
proportions. Eventually, it has been highlighted that the

rank of the system, imposed by the dimension of the
ensemble of perturbed simulations, has been reached in
two cases of study (spring and summer periods) for the
SC2 network detection ability. This limited rank was
thus acting as a limitation to the capability of the meth-
odology to discriminate between both extended config-
urations, using the criterion based on the representer
matrix spectrum analysis. Hence, it is likely that in-
creasing the number of perturbed simulations, and thus

Fig. 16 Representer matrix
spectrum relative to the reference
network (blue), the SC1 network
(green) and the SC2 network
(pink) for the period from May 3
to the 25, 2006

Fig. 15 Model space-time interpolated error on profile locations of the SC1 network (left) and the SC2 network (right)—position at surface (pink
triangles) and at depth (coloured dots) from May 3 to 25, 2006

Ocean Dynamics (2016) 66:567–588 585



refining the model error subspace approximation, will
enhance the network discrimination.

6 Conclusions

The present study aims at (1) investigating and assessing the
RECOPESCA network ability to detect a number of realistic
modes of uncertainty as stochastically simulated in the Bay of
Biscay and English Channel temperature dynamics and (2)
comparing on qualitative and quantitative ground several ob-
servational scenarios in an attempt to guide the future opera-
tion of the RECOPESCA programme.

At low computational cost, the use of the ArM method for
helping design and guide improvements of the observation
network, indeed, allows exploring the model error subspace
and highlighting major group of profiles that can constrain
these uncertainty cells. Analysing the results for the various
seasons, we conclude that the reference network (based on the
2008 profile distribution) is efficient for most of the year,
except in winter when there are too few observations. In the
latter case, the ArM method highlights strengths and weak-
nesses of the RECOPESCA network. Indeed, the added value
of a sustainable network based on fishing vessels of

opportunity is confirmed by the efficiency of this collection
of profiles at detecting the main modes of variability in this
region.

These results are based on a given observation error
(0.3 °C) that can be further discussed depending on local fea-
tures. However, sensitivity tests confirm that the present as-
sessment remains valid with different observation errors.
Changes in these errors will translate the spectra to higher
(lower) values if observation errors are larger (smaller)
influencing the number of detected modes. Then, comparisons
between different seasons/scenari will remain similar as well
as spatiotemporal structures of representers.

A few suggestions regarding possible observation net-
work extensions can be drawn from the present study.
The scenario exploration pointed out the importance of
the sampling of key regions in the Bay of Biscay and the
English Channel to constrain model uncertainties and by
extension, to monitor regions of large physical variabili-
ty. The need to keep collecting profiles in the western
English Channel has been confirmed. Also, the number
of profiles cannot be considered as a valid unique indi-
cator of efficiency (cf. scenario SC2). These recommen-
dations have been taken into account for future evolu-
tions of the equipped fishing vessels.

RECOPESCA programme is also collecting salinity pro-
files with some fishing vessels. The multi-parameter assess-
ment would be considered as soon as the quality and the num-
ber of salinity profiles will be suitable for the exploration.
However, linked to the river-driven dynamics in the region,
we anticipate similar conclusions considering temperature and
salinity profiles.

This study illustrates the potential benefit of the
existing French network HOSEA (High frequency
Observation network for the environment in coastal
SEAs) which is supporting a sustainable RECOPESCA
network in the Bay of Biscay and the English Channel as

Fig. 17 Representer matrix spectra relative to the reference (blue), the
SC1 (green) and the SC2 (pink) networks for the winter (left), summer
(middle) and autumn (left) periods under consideration. In winter, the top

figure is representing a zoomed spectrum for values between 10−3 and
105, and the bottom figure is the second part of the spectrum for small
values (between 10−25 and 10−3) covering a larger range of values

Table 1 Efficiency-
oriented diagnostic—
relative to the dominant
detected model error
mode—associated with
the reference and both
extension configurations,
for the winter, summer
and autumn periods

Efficiency REF SC1 SC2

Winter 0.14a 0.03 0.09

Spring 0.23 0.11 0.24

Summer 0.20 0.19 0.20

Autumn 0.20 0.10 0.15

a No detected model error mode for this
configuration (cf. Fig. 17)
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a key component of the continental shelf (including outer
shelf) observing systems for research and operational
oceanography. Further studies (Charria et al. 2015) are
investigating the complementary local use of other pro-
filing autonomous systems like gliders and of other var-
iables (e.g. salinity).
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