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Abstract 27 

This study investigates Atlantic Warm Pool (AWP) variability in the historical run of 19 28 

coupled general circulation models (CGCMs) submitted to phase five of the Coupled Model 29 

Intercomparison Project (CMIP5).  As with the CGCMs in CMIP3, most models suffer from the 30 

cold SST bias in the AWP region, and also show very weak AWP variability represented by AWP 31 

area index. However, for the seasonal cycle the AWP SST bias of model ensemble and model 32 

sensitivities are decreased compared with CMIP3, indicating that the CGCMs are improved. The 33 

origin of the cold SST bias in the AWP region remains unknown, but among the CGCMs in 34 

CMIP5 excess (insufficient) high-level clouds simulation deceases (enhances) the cold SST bias 35 

in the AWP region through the warming effect of the high-level clouds radiative forcing. Thus 36 

the AWP SST bias in CMIP5 is more modulated by an erroneous radiation balance due to 37 

misrepresentation of high-level clouds rather than low-level clouds as in CMIP3. AWP 38 

variability is assessed as in our previous study in the aspects of spectral analysis, interannual 39 

variability, multidecadal variability and comparison of the remote connections with ENSO and 40 

the NAO against observations. In observations the maximum influences of the NAO and ENSO 41 

on the AWP take place in boreal spring. For some CGCMs these influences erroneously last to 42 

late summer. The effect of this overestimated remote forcing can be seen in the variability 43 

statistics as shown in the rotated EOF patterns from the models. We conclude that NCAR-44 

CCSM4, GISS-E2H and GISS-E2R are the best three models of CMIP5 in simulating AWP 45 

variability.  46 

 47 

 48 
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1. Introduction 49 

 The Atlantic Warm Pool (AWP), defined as the region with sea surface temperature (SST) 50 

above 28.5oC consisting of  the Gulf of Mexico, the Caribbean Sea and the western tropical 51 

North Atlantic, undergoes strong variations on seasonal to multidecadal time scales (Wang and 52 

Enfield 2001, 2003; Wang et al. 2008, Enfield and Cid-Serrano 2010).  The AWP variability has 53 

been shown to play a role in the climate system by affecting precipitation patterns and tropical 54 

cyclone activity (Wang et al. 2006; Wang et al. 2008a; Wang et al. 2008b; Wang et al. 2011), so it 55 

is important to evaluate how well coupled general circulation models (CGCMs) represent this 56 

variability. Liu et al. (2012) (hereafter referred to as LWLE12) have studied the AWP variability 57 

against observations in 22 CGCMs from phase three of the Coupled Model Intercomparison 58 

Project (CMIP3), concluding that most CMIP3 CGCMs suffer from a marked cold SST bias in 59 

the AWP region but that there is always one group of CGCMs that are able to represent well each 60 

aspect of AWP variability, although each aspect is reproduced by a different set of models. This 61 

paper extends the AWP variability study in the new generation of CGCMs provided by phase 62 

five of the Coupled Model Intercomparison Project (CMIP5) and assesses the model progress as 63 

compared with CMIP3. 64 

The AWP develops in June, reaches its maximum during the four months of July, August, 65 

September and October, and decays quickly after October (Wang and Enfield 2003). For this 66 

annual cycle, Enfield and Lee (2005) showed that the AWP variation is largely forced by the 67 

shortwave radiation, while the latent heat flux plays a secondary role particularly during the 68 

AWP decay phase. This seasonal cycle in many of the CMIP3 models has significant cold bias in 69 

the AWP region (Chang et al. 2007, Chang et al. 2008, Richter and Xie 2008, Misra et al. 2009, 70 

Richter et al. 2012, LWLE12). Large and Danabasoglu (2006) and Chang et al. (2007) both 71 
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pointed that the North Atlantic subtropical high and associated surface winds are stronger than 72 

observed. Grodsky et al. (2012) further examined the tropical Atlantic SST bias based on the 73 

Community Climate System Model version 4 (CCSM4) and pointed out that the excess winds 74 

induced by erroneously high sea level pressure (SLP)  cause excess surface latent heat loss and 75 

cold SST bias in the  tropical North Atlantic (NTA).  However, based on an analysis of observed 76 

air-sea fluxes Misra et al. (2008) found that surface evaporation in the AWP region is weakly 77 

influenced by both surface winds and air-sea humidity variations, while in the National Centers 78 

for Environmental Prediction (NCEP) Climate Forecast System (CFS) the latent heat flux is only 79 

strongly modulated by the air-sea humidity variations. These studies indicate that unlike in the 80 

NTA, increased winds and evaporation cannot fully explain the cold SST bias in the AWP region. 81 

Li and Xie (2012) summarized that the tropical SST bias can be classified into two types: one 82 

type with the same sign across all basins that is highly correlated with the tropical mean caused 83 

by biases in atmospheric simulations of cloud cover, the other type with large variability in the 84 

cold tongue regions caused by biases of oceanic thermocline depth.  The AWP bias is more 85 

related to radiative flux errors due to local convection and clouds (LWLE12).  86 

As the AWP is adjacent to the NTA and in fact includes the western NTA (NTA is defined 87 

as the region of 5.5⁰N-23.5⁰N and 57.5⁰W-15⁰W), climate variability of the AWP is 88 

contemporaneously correlated with variability in the NTA to the east (Wang and Enfield, 2003). 89 

Thus the major modes of the tropical Atlantic variability contribute to the AWP interannual and 90 

longer time scales. The correlations of the AWP  with the tropical Atlantic meridional gradient 91 

mode (AMM) (Servain 1991; Chang et al. 1997, Xie et al. 1999; Enfield et al. 1999; Xie and 92 

Carton 2004) and the Atlantic Niño (Zebiak 1993; Carton and Huang 1994; Latif and Grotzner 93 

2000; Okumura and Xie 2006) are statistically significant but relatively low compared with the 94 
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correlations of the AWP with Niño-3 (5oS–5oN, 150o–90oW) SST anomalies and NTA SST 95 

anomalies, suggesting that the impacts of the AMM and the Atlantic Niño on the AWP  are 96 

weaker than those of the Pacific El Niño and NTA (Wang and Enfield 2003). The different 97 

correlation of the AWP with AMM and NTA is consistent with the observation of Enfield et al 98 

(1999) that the NTA and tropical South Atlantic are uncorrelated at zero lag and show different 99 

timescales of variability. Through rotated Empirical Orthogonal Functions (rEOFs) statistical 100 

analysis, the southern tropical Atlantic (STA) pattern, northern tropical Atlantic (NTA) pattern, 101 

and subtropical South Atlantic (SSA) pattern are three major modes exhibited (Huang and 102 

Shukla 2005; Bates 2008). In CGCMs, however, the STA mode may demonstrate two separate 103 

patterns in the tropical South Atlantic. The mode with variability in the southern segment of the 104 

Benguela upwelling zone off the coast of Namibia is subcategorized as STA-BG mode and the 105 

mode of equatorial tongue pattern is subcategorized as STA-EQ mode (Muñoz et al., 2012).  The 106 

separation of STA-BG and STA-EQ in numerical models unlike the observations is related to the 107 

model systematic bias of excessive southward shift of the intertropical convergence zone to 108 

around 10oS in boreal spring (Huang et al. 2004). Excessive southward shift of the Atlantic ITCZ 109 

in CMIP3 model and its relation to the weak bias of the southerly wind along the African coast 110 

are also discussed by Richter and Xie (2008); Hu et al. (2008) and Doi et al. (2010). Tozuka et al. 111 

(2011) showed that the tropical Atlantic bias is highly sensitive to the choices of deep convection 112 

parameterization. 113 

Another issue related to model performance and assessment is the extent to which the 114 

models reproduce the observed manner in which climate modes appear to force changes in the 115 

AWP. Much more of the NTA variability is caused by remote forcing from climate variability 116 

outside the tropical Atlantic than by the intrinsic self-sustained modes of the tropical Atlantic 117 
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variablity (Xie and Carton, 2004). Czaja et al. (2002) showed that almost all NTA-SST extreme 118 

events can be related to either ENSO or the NAO, consistent with Enfield et al. (2006).  Analysis 119 

based on NOAA-CIRES Twentieth Century Global Reanalysis (20CR) indicates that both 120 

positive ENSO phase and the negative NAO phase in winter correspond to reduced trade winds 121 

in the AWP region (LWLE12). The westerly anomalies induced by positive ENSO and the 122 

negative NAO, associated also with increased sea level pressure and subsidence in the NTA, lead 123 

to local heating through reduced latent heat loss, ultimately leading to warm SST during March 124 

to May (ENSO) and February to April (NAO). This behavior is a known feature of anomalous 125 

AWP growth and well captured by only 5 models out of 22 CGCMs in CMIP3 (LWLE12).  126 

The Atlantic Multidecadal Oscillation (AMO) (Delworth and Mann 2000; Enfield et al. 127 

2001; Bell and Chelliah 2006) is an oscillatory mode occurring in the North Atlantic SST 128 

primarily on multidecadal timescales. Wang et al. (2008) showed that the AWP variability 129 

coincides with the signal of the AMO “the warm (cool) phases of the AMO correspond to more 130 

large (small) AWPs” and suggested that the multidecadal influence of the AMO on Atlantic 131 

tropical cyclone activity (Goldenberg et al. 2001) may operate through the mechanism of the 132 

AWP-induced atmospheric changes. In CMIP3, the global SST difference pattern between large 133 

AWP years and small AWP years on the multidecadal timescale resembles the geographic pattern 134 

of the AMO for most coupled models (LWLE12). 135 

Many studies have been conducted to evaluate the performance of CGCMs in World 136 

Climate Research Program (WCRP) CMIP3 multi-model dataset (e.g., Saji et al. 2006; Joseph 137 

and Nigam 2006; Chang et al. 2007; Ritchter and Xie 2008; de Szoeke and Xie 2008; Wang et al. 138 

2009).  As the CMIP5 model dataset is now available, it is of interest to evaluate how well the 139 

new generation of CGCMs represents AWP variability in order to improve and apply coupled 140 
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climate models for AWP research. In this study we analyzed 19 state-of-the-art CGCMs in the 141 

WCRP CMIP5 multimodel dataset as to how they replicate AWP variability from seasonal to 142 

multidecadal time scales as well as the AWP’s teleconnection with ENSO and the NAO. The 143 

remainder of the paper is organized as follows. The models, validation datasets and methods 144 

used in this study are described in section 2. The AWP seasonal cycle and bias analysis are 145 

included in section 3.  The AWP variability of interannual and longer timescales in CGCMs is 146 

studied and compared with observations and CMIP3 simulations in section 4. Section 5 147 

summarizes the conclusions. 148 

 149 

2. Data and methods 150 

This study is based on output from historical simulations of 19 CGCMs in WCRP CIMP5 151 

multi-model dataset.  The modeling center and country, CMIP5 model abbreviation and 152 

designated letter, and length of historical simulations for each model in this study are shown in 153 

Table 1. CMIP3 model abbreviations are also included for references in the table grouped by 154 

modeling center. The model data can be downloaded from the website of Program for Climate 155 

Model Diagnosis and Intercomparison (PCMDI) (http://www-pcmdi.llnl.gov/). The historical 156 

simulations are spun up and then forced by solar, volcanic, sulfate aerosol and greenhouse gas 157 

forcings (Meehl et al. 2007) from different starting years (1850, 1859, 1860, 1861) to 2005.  158 

Observational datasets are used to validate the variabilities of CGCM simulations.  SST 159 

data are the NOAA Extended Reconstruction Sea Surface Temperature version 3 (ERSST v3) 160 

(Smith et al. 2008). The temporal coverage is from January 1854 to the present.   These data can 161 

be obtained from http://www.ncdc.noaa.gov/oa/climate/research/sst/ersstv3.php. Surface fluxes 162 

and SLP data are from NOAA-CIRES Twentieth Century Global Reanalysis (20CR) Version II 163 
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(Compo et al. 2010). This atmospheric reanalysis spans the entire twentieth century (1871-2008), 164 

assimilating only surface observations of synoptic pressure, monthly SST and sea ice 165 

distribution. More information about this dataset is provided in 166 

http://www.esrl.noaa.gov/psd/data/20thC_Rean/.  Latent heat flux and surface winds from 167 

IFREMER are provided from ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/flux-merged 168 

(Bentamy et al. 2008). This entire 16-year (1992-2007) surface turbulent fluxes dataset estimated 169 

from satellite observations are improved from the previous version in assessing the surface winds 170 

from ERS-1, ERS-2, and QuickSCAT scatterometers and using the new NOAA sea surface 171 

temperature estimates.  172 

The AWP area index (AWPAI) is defined as the area inside the 28.5°C isotherm at the 173 

sea surface in the AWP region.  Due to the cold SST bias in CGCMs the AWPAI cannot be 174 

defined for all the models and in certain years.  So the AWP SST index (AWPTI) is defined in 175 

this study as the box averaged SST from coast to 40˚W and from 5˚N to 30˚N. The AMO index is 176 

defined as the detrended area weighted average of the SST anomalies over the North Atlantic 177 

from 0˚N to 70˚N (Enfield et al. 2001). The Niño 3 index is an average of the SST anomalies in 178 

the region 150˚W - 90˚W and 5˚N to 5˚S. The NAO index is chosen as the difference of 179 

normalized SLP between 39˚N, 9˚W (Lisbon, Portugal) and 65˚N, 22˚W 180 

(Stykkisholmur/Reykjavik, Iceland) (Hurrell 1995). All indexes are calculated for each model 181 

and observations. The clouds are classified by cloud top height. The high level clouds are 400 182 

hPa or over, the middle level clouds 400 to 600 hPa, and the low level clouds 600 hPa or less as 183 

in a rough standard. The cloud factions of the model outputs are integrated over these three 184 

layers separately to represent the low level, middle level and high level cloud amount. 185 

 Wavelet software for spectrum analysis was provided by C.Torrence and G. Compo 186 
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(Torrence and Compo 1998) for spectrum analysis. The Taylor diagram (Taylor 2001) is applied 187 

to quantify how well models simulate an observed climate field.  It relies on three non-188 

dimensional statistics: (1) the ratio of the variances of the two fields (r, which is the standard 189 

deviation of the model divided by standard deviation of the observations); (2) the correlation 190 

between the two fields (R, which is computed after removing the overall means); and (3) the root 191 

mean square error between models and observation (E, which is normalized by the standard 192 

deviation of the observed field). This diagram provides a 2-D graph based on the three statistics 193 

summarizing how closely a pattern matches observations.  194 

 195 

3. AWP Climatology 196 

a. Seasonal Cycle 197 

The AWPAI of 19 models (In this study models (CGCMs) indicate the models from 198 

CMIP5 or general meaning unless CMIP3 follows) ensemble is slightly increased during July, 199 

August and September (JAS) compared with the ensemble of AWPAI in CMIP3 (Figure 1.a). 200 

Though the seasonal cycle of AWPAI ensemble with peaks in JASO is well simulated, it is still 201 

much underestimated compared with ERSST due to the cold SST bias in the AWP region (Misra 202 

et al. 2008; LWLE12). The bias of APWAI reaches -4.2 106
 km2

 in summer, but almost no bias 203 

exists in January as there is no AWP in winter based on definition. The spread of models AWPAI 204 

contracts in contrast with the spread of CMIP3.  The AWPAI of 10 models are less than 20% of 205 

ERSST AWPAI in summer and for some certain years AWPAI of a part of CGCMs cannot be 206 

computed to study their interannual and multidecadal variability due to the cold SST bias. 207 

Therefore, the AWPTI is used for this study. 208 

Figure 1.b shows the AWPTI of model ensemble mean successfully representing the 209 
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seasonal cycle of ERSST which peaks in JASO. However, there is cold bias throughout all the 210 

year with minimum cold bias of 0.89oC in January and maximum cold bias over 1.2oC in MJJ.  211 

The spread is consistent for all the months with a range of 1.9-2.2oC. Compared with CMIP3, the 212 

ensemble mean of AWPTI increases about 0.3oC all year round (Figure 1.d) and the spread of 213 

models also contracts about 1oC. To some extent the performance of CMIP5 in simulating AWP 214 

seasonal cycle is improved from the view of model ensemble. The improvement of models 215 

ensemble mean may be explained by the slight increase of net surface heat flux in CMIP5 216 

(Figure 1.d). Compared with CMIP3, the ensemble mean of net surface heat flux increases 217 

within a range of 1.5 W/m2 to 3.4 W/m2 during JJASO. This increase accounts for about 0.1oC 218 

temperature change if we roughly estimate the mixed layer depth at about 25m in the AWP 219 

region. For each component of surface heat fluxes, the ensemble mean of CMIP5 has more latent 220 

heat loss (heat loss means that ocean loses heat, heat gain means that ocean gains heat), more 221 

longwave radiation loss, less sensible heat loss and more net shortwave radiation gain (Figure 222 

1.d) compared with CMIP3. However, the ensemble mean of both CMIP3 (Figure 1.f) and 223 

CMIP5 (Figure 1.e) possesses the same sign of bias for each component of surface heat fluxes 224 

except net shortwave radiation given the reference of 20CR. Wang and Enfield (2001) suggested 225 

that the SST seasonal variations in the AWP region are induced primarily by surface net heat flux 226 

with a phase lag of 3-4 months. The shortwave and latent heat fluxes are two largest terms. The 227 

shortwave flux has maximum value from April to August, and the latent and sensible heat losses 228 

have their minima around May owing to lower winds speeds associated with the seasonal south-229 

north movement of the ITCZ. Minimum longwave radiation occurs from July to September 230 

because greater cloud cover results in an increase in the downward longwave radiation from 231 

cloud ceilings.  This results in the maximum of net heat flux occurring in late spring and 232 
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maximum SST in fall. These relationships between heat fluxes and AWP SST are well reflected 233 

in 20CR (Figure 1.c), CMIP3 and CMIP5 ensemble mean. 234 

We categorize CMIP5 models into different groups based on their development 235 

institutions. For group of the GISS, both GISS-E2H and E2R have better performance in 236 

simulating the AWP seasonal cycle compared with previous generation of GISS-AOM and ER. 237 

The AWPTI bias of GISS-E2R (Figure 2.a) is much smaller than the GISS-ER (Figure 2.b). 238 

Compared with GISS-ER, the latent heat flux bias decreases the most in GISS-E2R. However, 239 

this decreased positive latent heat flux bias is not able to explain the decreased negative AWPTI 240 

bias. For group of the NCAR, CCSM4 (Figure 2.c) is much improved from CCSM3 (Figure 2.d) 241 

for the seasonal AWPTI simulation. Compared with CCSM3 for each component bias of surface 242 

heat fluxes, the shortwave heat flux bias changes the most in CCSM4.  This increased shortwave 243 

heat flux in CCSM4 may explain the decreased negative AWPTI bias. Both GISS-E2R and 244 

CCSM4 improves the simulation of AWPTI from the last generation corresponding CGCMs, but 245 

the heat flux component bias analysis cannot give a consistency conclusion why the simulations 246 

are improved.  247 

 For group of the GFDL, GFDL-CM3 (Figure 2.e), ESM2G and ESM2M (not shown) of 248 

CMIP5 have no better performance in simulating the AWP seasonal cycle compared with GFDL-249 

CM2 (Figure 2.f) of CMIP3. CM3 has a notable difference in seasonal cycle of surface heat 250 

fluxes compared with the other GFDL models. In summer, CM3 has less sensible heat loss, less 251 

longwave radiation loss and shortwave radiation gain, with the net heat flux peaking one month 252 

earlier than the other GFDL models (Figure 2.e-f).   253 

For group of the CSIRO, the CSIRO-MK3.6 (Figure 2.g) of CMIP5 has larger AWPTI 254 

negative bias but also has larger positive net heat flux  compared with  CSIRO-MK 3.5 of 255 
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CMIP3 (not shown). The larger net heat flux of CSIRO-MK3.6 is not able to explain the weaker 256 

amplitude of AWPTI compared with MK3.5, which may indicate that oceanic processes play a 257 

role. 258 

For the other goups of CGCMs, detail discussions are not included. In general no 259 

unanimous conclusions of how the surface fluxes components affect the AWPTI bias. But for 260 

some models such as GFDL-CM3 (2.e) GFDL-CM2 (2.f) and CSIRO-MK3.6 (2.g) the seasonal 261 

cycle of longwave radiation bias is highly correlated with AWPTI bias; for some models such as 262 

GISS-ER (2.b), CCSM3 (2.d) the seasonal cycle of shortwave radiation bias is correlated with 263 

AWPTI bias. Thus AWP SST bias in CGCMs possibly relate with different physical mechanisms 264 

associated with shortwave and longwave radiation.  265 

In summary the AWP (AWPAI and AWPTI) seasonal cycles of NCAR-CCSM4, CSIRO-266 

MK360, GISS-E2H, GISS-E2R, MOHC-HadCM3, MPI-ESM-LR, MPI-ESM-P have 267 

comparable amplitudes as ERSST.  Though each individual model has changed or made no 268 

progress in simulating the AWP seasonal cycle compared with its corresponding previous 269 

generation model, the ensemble mean of AWP climatology in CMIP5 models is somewhat 270 

improved overall, as well as the model spreads decrease. However, the state-of-the-art CGCMs 271 

in CMIP5 still suffer from a significant cold bias in the AWP region.  272 

 273 

b. Bias analysis 274 

The AWP peaks in summer and fall.  To compare with ERSST, the SST bias pattern is 275 

shown for the 19 member ensemble mean of CMIP5 (Figures 3.b.1-3.b.4) and for selected 276 

models (Figure 3.c-e). The ensemble mean character similar with CMIP3 (LWLE, 2012) as 277 

shown in 3.b.1-4 is that, in addition to the cold bias north of the equator, the southeast Atlantic 278 
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warm SST bias including the cold tongue and the Angola-Benguela coastal regions exists in all 279 

the models except CSIRO-MK3.6 (Figure 3.d.1-4) for all four seasons. It is possible that the 280 

positive feedback of wind, evaporation and SST (WES) which causes the tropical Atlantic 281 

Variability (Xie and Carton 2004) may generate these opposite biases across the equator. The 282 

process is that the warm bias in the southeast tropical Atlantic induces stronger Northeast Trade 283 

winds in the NTA, and then leads to more latent heat loss, therefore a cold SST bias of the NTA 284 

can be formed which in turn decreases the Southeast trade winds and enhances the warm bias in 285 

the southeast tropical Atlantic due to less latent heat loss. IPSL-CM5B-LR (Figure 3.e.1-4), 286 

similar with IPSL-CM5A-LR, IPSL-CM5A-MR and MR-CGCM3 (not shown), has a cold bias 287 

with maxima across the tropical North Atlantic, which resembles a strip and is located near 288 

15°N.  This character is different from the cold SST bias pattern of the NTA in the other 289 

CGCMs, which indicates that different mechanisms lead to the cold bias in the CGCMs.  290 

Grodsky et al. (2012) found that the atmospheric component of CCSM4 has abnormally 291 

intense surface subtropical high pressure systems which cause the northeast trade winds to be too 292 

strong and lead to an excessively large latent heat loss in the NTA region. Before we examine 293 

this process here for the CMIP5 CGCMs, it should be noted that the cold SST bias enhances the 294 

SLP by raising the air density above it. In fact, the positive (negative) SLP bias (right panels in 295 

Figure 4.b.1-4) is largely collocated with the cold (warm) SST bias (Figure 3.b.1-4), which 296 

seems to support a strong effect (or feedback) of the SST bias on the SLP.  Except GISS-E2H, 297 

GISS-E2R, HadCM3, the SLP bias pattern of 16 CGCMs shares the similarity with the ensemble 298 

as shown in Figure 4. The CGCMs can capture the major characters of SLP climatology (Figure 299 

4.a.1-4), but in most of the NTA region, the CGCMs overestimate SLP by 2 hpa (Figure 4.b.1-4). 300 

In the northeast trade winds region of CGCMs ensemble (Figure 5.a.1-4), there is always a 301 
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positive wind speed bias throughout all the four seasons (Figure 5.b-1-4). The latent heat loss 302 

maximum centered to the south of Gulf Stream is mainly located in the AWP region (Figure 303 

6.a.1-4). The latent heat loss bias in the AWP region is positive instead of negative as shown in 304 

the NTA region for the CGCMs ensemble (Figure 6.b.1-4). It suggests that for most models, the 305 

NTA cold SST bias can be traced to excessive evaporation due to erroneously high SLP and 306 

strong northeast trade winds. However, in the AWP region this mechanism is not able to explain 307 

the cold SST bias.  308 

The pressure vertical velocity at 500mb of the CGCMs ensemble (Figure 7.a.1-4) shows 309 

the location of the ITCZ and its seasonal cycle. Compared with 20CR, CGCMs in the AWP 310 

region has subsidence bias all year round. This subsidence bias may be induced by overturning 311 

through the uplift process in the ITCZ of the east Pacific (Figure 7.b.1-4), since the convection 312 

over Amazonian region is also much weakened in CGCMs. The subsidence bias tends to 313 

suppress high level cloud formation and increase low level cloud formation.  LWLE12 found that 314 

the negative SST bias of CMIP3 in the AWP region is connected with an excessive amount of 315 

simulated low-level cloud, which blocks shortwave radiation from reaching the sea surface. This 316 

positive feedback of colder SST, increased fraction of low level-cloud and decreased surface 317 

shortwave flux (Figure 9) may enhance the cold SST bias. However, it is uncertain to what extent 318 

the excessive simulated low-level clouds in CMIP3 CGCMs cause or are caused by the SST bias. 319 

The same analysis was performed on the output from CMIP5 CGCMs. We don’t find the 320 

relationship of higher AWP SST corresponding to more shortwave radiation and less low-level 321 

cloud fraction during AWP peak season.  Higher AWP SST in ASO, however, corresponds to less 322 

net longwave heat loss (Figure 8.a), due to an increase in the downward longwave heat flux 323 

(Figure 8.b), and to more high-level cloud fraction among the CMIP5 CGCMs. This relationship 324 
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suggests that though there is still subsidence bias for the CMIP5 CGCMs in the AWP region, 325 

excessive high-level clouds are simulated (Jiang et al. 2012) and the warming effect of the high-326 

level clouds radiative forcing (Su et al. 2008) as shown in Figure 9 dominates the modulation of 327 

AWP SST bias (the warming effect of the high-level clouds means that high-level clouds tend to 328 

reflect more longwave radiation back to earth surface and have less impact on downward 329 

shortwave radiation, and therefore have a warming effect on sea surface). Thus more (less) high-330 

level clouds simulation may decrease (enhance) the cold AWP SST bias.  331 

Why excessive high-level clouds are simulated compared with CMIP3? Significant 332 

improvements in both deep convection scheme and shallow convection scheme have been made 333 

in CMIP5. For example GFDL AM3 (Donner et al. 2011) includes new treatments of deep and 334 

shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of 335 

stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by 336 

emissions with advective, convective, and turbulent transport. The other possible reason is that 337 

the mean state of AWP SST of CGCMs increases in CMIP5 though the cold SST bias still exists. 338 

In general lower SST tends to form more shallow convection and leads to more convection-339 

related low-level clouds. Higher SST tends to induce more deep convection and then more high-340 

level clouds can be formed. The increases of mean AWP SST in CMIP5 may also mitigate the 341 

excess low-level cloud formation and explain why low-level clouds and AWPTI are not 342 

correlated in CMIP5. Again the ultimate origin of the cold bias remains unknown. 343 

 344 

4. AWP variability 345 

a. Spectrum analysis 346 

 Power spectrum analyses of the time series of monthly AWPTI are shown in Figure 10. 347 
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There is significant energy at multidecadal periods between about 20 years and 32 years and 348 

longer than 32 years in ERSST (Figure 10.a). The spectrums of most CGCMs, however, 349 

demonstrate peaks in the interannual band (3-7 years), the decadal band (8-20 years) and the 350 

multidecadal band (20-30, 40-60 years or longer) all with 95% significance as shown in Figure 351 

10.b. The ensemble spectra of the CGCMs also reflect the three bands. Based on the spectral 352 

character of the model ensemble, four groups of models are categorized as shown in Table 2. In 353 

Category I (as shown in Figure 10.c), four models simulate the significant multidecadal bands: 354 

GFDL-CM3, MOHC-HadGEM2CC, MPI-ESM-LR, MRI-CGCM3. In Category II (shown in 355 

Figure 10.d), three models simulate the interannual band and multidecal bands: GFDL-ESM2G, 356 

GFDL-ESM2M and MOHC-HadCM3 at the 95% significance level. In category III six models 357 

(Figure 10.e), consisting of GISS-E2H, GISS-E2R, INM-CM4, IPSL-CM5A-MR, MPI-ESM-P 358 

and NCC-NorESM1-M, simulate significant variability for the decadal and multidecadal bands. 359 

In category IV six models simulate significant variability for the interannual, decadal and 360 

multidecadal bands (Figure 10.f): CCCMA-CanESM2, NCAR-CCSM4, CSIRO-MK3.6.0, 361 

MOHC-HadGEM2ES, IPSL-CM5A-MR and IPSL-CM5B-LR. Because a higher SST anomaly 362 

leads to increase deep convection and the convection-related net heat flux tends to cool the AWP 363 

(Wu et al., 2006), this local air-sea interaction tends to damp AWP SST anomalies and decrease 364 

their interannual variability though the AWP still demonstrates substantial interannual variations 365 

through non-convection related processes such as advection.  However, no significant periods are 366 

shown for the AWP interannual variability of the observations. The CGCMs are limited in their 367 

representation of the local air-sea interaction as discussed in Wu et al. (2006) and also show 368 

strong AWP internal variability with significant periods on the interannual band (LWLE12). The 369 

source of low-frequency variability on the multidecadal timescale is possibly from oceanic 370 
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processes (Delworth and Mann 2000). 371 

In summary, spectrum analysis of ERSST reveals that multidecadal variability is 372 

dominant in the AWP region. It suggests that there is no significant period for interannual 373 

variability. It doesn’t mean that the interannual variation is weak. On the contrary, the standard 374 

deviation of AWPTI on the interannual band for both observation and CGCMs is larger than the 375 

deviation on the longer time scales (Figure 11).  11 out of 19 CGCMs have larger standard 376 

deviation of AWPTI compared with observations. In the next two sections, we focus on the 377 

interannual and multidecadal variability of the AWP in its peak season. 378 

 379 

b. Interannual variability 380 

We perform rEOF analysis on the tropical Atlantic ASO SST from 30˚S to 30˚N as shown 381 

in Figure 10. The first mode of observations with 17.0% variance (Fig. 12.a.1) is a STA-EQ 382 

mode featuring maximum SST anomalies on the equator and associated changes in the easterly 383 

trade winds (Philander 1986; Zebiak 1993; Carton and Huang 1994). The second mode is the 384 

NTA mode with 13.0% variance (Fig. 12.a.2). The SST anomalies are centered near African 385 

coast in the northern tropical Atlantic Ocean. The third mode is the STA-BQ mode with 10.3% 386 

variance characterized by SST fluctuations centered along the Benguela coast. The fourth mode 387 

is SSA mode with 10.2% variance featuring maximum SST anomalies in the open ocean of the 388 

subtropical Atlantic. AWP interannual variability is primarily dominated by these four modes 389 

though the variance of these modes in the AWP region is small.  390 

The rEOF modes of CGCMs are listed in Table 2. Compared with the rEOF modes of 391 

ERSST, the CGCMs are categorized into three groups. Category I, consisting of NCAR-CCSM4 392 

(Figure 12.b.1-4) and GISS-E2H (Figure 12.c.1-4), successfully captures all the first four modes 393 



18 

 

of observations with the overall character of each mode.  Category II, consisting of CCCMA-394 

CanESM2, CSIRO-MK360, GISS-E2R, MOHC-HadGEM2-ES, INM-CM4, IPSL-CM5A-LR, 395 

IPSL-CM5A-MR, IPSL-CM5B-LR and MRI-CGCM3 (Figure 12.d.1-4), is able to simulate the 396 

SSA, NTA and STA in their first four modes. In this group CGCMs, however, can’t separate 397 

STA-EQ and STA-BG modes. A different type of NTA mode across the basin as shown in Figure 398 

12.d.1 is captured by many CMIP5 CGCMs and we defined it as NTA II mode.  Huang et al. 399 

(2004) pointed out that this mode is likely stronger in boreal summer in the tropical Atlantic and 400 

seems to be associated with the tropical extension of the midlatitude SST anomalies as the 401 

“North Atlantic Horse shoe” pattern. This pattern also resembles the remote forced pattern in 402 

NTA by ENSO and the NAO (Czaja and Marshall 2001).  As we will discuss the remote 403 

connection in section 4.d, we find that for some CGCMs the influences of the NAO and/or 404 

ENSO can last from boreal spring to summer as shown in Figure 14.e.1-2. This overestimated 405 

remote forced pattern in summer can be embedded into tropical Atlantic variability and here we 406 

ascribe remote forcing to the cause of NTA II mode of CGCMs. Category III, consisting of 407 

GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, MOHC-HadCM3, MOHC-HadGEM2, MPI-408 

ESM-LR, MPI-ESM-P and NCC-NorES1-M, can only capture two modes of the first four 409 

ERSST modes. The patterns which cannot be defined as any one of the four modes of ERSST are 410 

not discussed and listed in Table 2. Those patterns may be related with model bias. 411 

 412 

c. Multidecadal variability 413 

Based on the AWPTI of ERSST, the pattern of global SST difference between large AWP 414 

years and small AWP years on the multidecadal timescale is shown in Figure 13.a. The threshold 415 

value of AWPTI to define large (small) AWP years is 0.1oC (-0.1oC). As discussed by LWLE12, 416 
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this pattern is identical to the pattern regressed on AWPAI of JJASO (Wang et al. 2008a), but 417 

also has global warming signature included because the linear detrending cannot remove the 418 

entire global warming signal. The spatial pattern suggests that the AWP multidecadal variability 419 

resembles the AMO, which is well supported by a close relationship between the AWPTI and 420 

AMO index. For the ensemble of 19 models, the pattern of global SST difference between large 421 

AWP years and small AWP years shown in Figure 13.b has a realistic representation of the 422 

observed AMO pattern. Compared with ERSST, 14 models: CanESM2, CSIRO-MK360, GFDL-423 

CM3 (Figure 13.d), GFDL-ESM2G, GISS-E2H, GISS-E2R, HadGEM2CC, INMCM4, IPSL-424 

CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MPI-ESM-LR, MPI-ESM-P and NorESM1, 425 

successfully reproduce the major characteristics of the observed pattern of global SST difference 426 

between large AWP years and small AWP years.  NCAR-CCSM4 (Figure 13.c), GFDL-ESM2M 427 

and MRI-CGCM3 show a global warming signature with out-of-phase cooling to the south of 428 

Greenland Island. MOHC-HadCM3 and MOHC-HadGEM2ES have significant cooling pattern 429 

in the north Pacific instead of warming shown in most CGCMs. 430 

 431 

d. Remote connection 432 

 Next we focus on the interannual variability of the AWP induced by remote influences. 433 

AWP variability can be remotely influenced by ENSO and the NAO. Czaja et al. (2002) and 434 

Enfield et al. (2006) studied the delayed influence of ENSO and the NAO on the tropical North 435 

Atlantic region. Here we performed the same analysis as LWLE12 on the AWP region to show 436 

how this remote influence acts on the AWP in CGCMs.  We regress zonally averaged observed 437 

variables including surface wind stress, net surface heat flux and SST in the AWP region on the 438 

Niño-3 SST index (Fig. 14.a.1) and the negative NAO index (Fig. 14.a.2) from January to 439 



20 

 

December. Figure 14.a.1 shows that positive ENSO events correspond to westerly low-level 440 

wind anomalies over the AWP (shown in vectors) which are largest during JFM. This wind 441 

anomaly induces heating between 5˚N and 20˚N  over the AWP region at a rate of 8 W m-2  due 442 

to  a decreased latent heat loss (shown in contour) and leads to a warm SST anomaly (shown in 443 

shading) of 0.2˚C during FMAM. Figure 14.a.2 shows a regression pattern on the negative NAO 444 

index similar to Figure 14.a.1. But the magnitude of the SST warming anomaly between 5˚N and 445 

20˚N is about 0.2˚C less than the magnitude of ENSO influence. The anomalous net heat flux 446 

also switches sign after March. The same results have been addressed in detail in LWLE12. The 447 

mechanism determining the forcing of AWP variability in spring by both ENSO and the NAO is 448 

similar with the mechanism suggested by Czaja et al. (2002) for the NTA. 449 

Compared with the above observational analysis, the ensemble of the 19 analyzed models 450 

successfully simulates the observed remote influence pattern in the AWP region induced by both 451 

ENSO (Fig. 14.b.1) and the NAO (Fig. 14.b.2). Only four models, identified as Category I, are 452 

able to successfully capture the major features for the remote influence from both the ENSO and 453 

NAO influences: NCAR-CCSM4 (Figure 14.c.1-2), GISS-E2H, GISS-E2R and NCC-454 

NorESM1M. Four models in Category II are able to capture the major character of the NAO 455 

influence: MOHC-HadGEM2CC (Figure 14.d.1-2), MOHC-HadGEM2ES, INM-CM4, IPSL-456 

CM5A-MR. In these models, the wind-evaporation-SST mechanism still holds valid in 457 

explaining the processes. However, the process of warming in FMAM between 5˚N and 20˚N 458 

induced by ENSO is not captured or captured but lasts to ASO.  Category III, consisting of 459 

CCCMA-CanESM2, CSIRO-MK360, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, MOHC-460 

HadCM3, IPSL-CM5A-LR, IPSL-CM5B-LR, MPI-ESM-LR, MPI-ESM-P and MRI-CGCM3 461 

(Figure 14.e.2), is not able to successfully simulate the observed regression patterns for both 462 
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ENSO and the NAO. These models either simulated a delayed warming in ASO pattern (Figure 463 

14.e.2) or are even not able to capture the warming phase between 5˚N and 20˚N compared with 464 

observations. 465 

In Figure 15.a, a Taylor diagram is constructed using the regression coefficients of ENSO 466 

influence shown in Figure 14 to quantify the performance of CGCMs. The correlation between 467 

each model and observations is calculated between the regression coefficient at each grid point 468 

of model and the regression coefficient at the same grid points of observation as shown in the 469 

domain of Figure 14.a.1. The standard deviation for the statistics of each model is divided by the 470 

standard deviation of observations. The reference point “A” for perfect correspondence of 471 

models to observations is at the (1, 1) point of standard deviation and correlation coefficient 472 

coordinates. If the point of a model in the diagram is closer to the reference point, then the model 473 

has a better performance in representing the observed pattern.   474 

By this metric NCAR-CCSM4 (C), INM-CM4 (M), GISS-E2H (H), NCC-NorESM1M 475 

(T) are the models that best replicate the AWP connection to ENSO. Except INM-CM4, all the 476 

other three models are categorized as the best models in earlier discussion in simulating ENSO 477 

influence on the AWP based on subjective judgment. For INM-CM4, the regression pattern of 478 

ENSO has notable erroneous warming close to the equator, except the warming between 5˚N and 479 

20˚N in spring as in observations. So we regard this model as the one unable to simulate the 480 

ENSO influence successfully. In general, the Taylor diagram has proved to be successful tool to 481 

quantitatively evaluate the performance of CGCMs. 482 

Figure 15.b is the same as Figure 15.a except that the statistics are defined as regression 483 

coefficients of SST onto the NAO (DJFM) index at all grid points within the domain as shown in 484 

Figure 14.a.2. GISS-E2H (H) and MPI-ESM-P (Q) are the best two models compared with the 485 
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reference point for observations. MPI-ESM-P, however, has a delayed NAO influence till ASO, 486 

so it is not summarized as one of the best model in simulating NAO influence in earlier 487 

discussion. Comparison between Figure 15.a and Figure 15.b indicates that the selected 19 488 

CMIP5 CGCMs, unlike the CGCMs in CMIP3, demonstrate a comparable performance in 489 

simulating remote influence pattern in the AWP region induced by the NAO with the 490 

performance in simulating the influence induced by ENSO. This conclusion is also reflected in 491 

the regression patterns of the model ensemble mean in Figure 14.b.1 and Figure 14.b.2. 492 

  493 

5. Summary and Discussion 494 

In this paper we explore AWP variability in 19 CGCMs from the CMIP5 database and 495 

validate them against observations over the twentieth century at the seasonal, interannual and 496 

multidecadal time scales, as well as for the remote connections with ENSO and the NAO. Both 497 

the AWPAI and AWPTI are defined to study the seasonal cycle. Severn models, NCAR-CCSM4, 498 

CSIRO-MK360, GISS-E2H, GISS-E2R, MOHC-HadCM3, MPI-ESM-LR and MPI-ESM-P have 499 

the best performance in simulating the AWP seasonal cycle based on both indexes. The AWPAI 500 

is almost zero for some models in most years due to cold SST bias found in the northern tropics 501 

for most models. Thus, we have chosen an SST index as a more effective but equivalent proxy 502 

for AWP variability. Only NCAR-CCSM4 and GISS-E2H are able to capture all the first four 503 

modes of ERSST rEOF. Analysis of the AWP remote connection with ENSO and the NAO 504 

shows that NCAR-CCSM4, GISS-E2H, GISS-E2R and NCC-NorESM1M are the best group of 505 

models in simulating the processes by which ENSO and NAO influence the AWP region through 506 

wind-evaporation-SST interactions. 14 models listed in Table 3 successfully capture the spatial 507 

characters of global SST between large AWP years and small AWP years. All the best models in 508 
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each evaluation aspect are summarized in Table 3. NCAR-CCSM4, GISS-E2H and GISS-E2R 509 

are best models in simulating the AWP variability based on this study. The previous generation of 510 

models developed at NCAR and GISS (CCSM3, GISSer and GISSaom) are quite limited in AWP 511 

simulation (LWLE12) and hence are much improved in their CMIP5 reincarnation. As the 512 

physics and configuration for every CGCM are improved and more complex compared with 513 

CMIP3 CGCMs, the results presented in this study provide a useful reference in continuing to 514 

improve CGCM simulations of the AWP. 515 

As discussed with respect to the AWP seasonal cycle, the cold SST bias in the AWP 516 

region still exists in most CMIP5 CGCMs. The pattern of the warm SST bias in the cold tongue 517 

and Angola-Namibia region and cold bias in the NTA is a ubiquitous feature of most CGCMs 518 

from both CMIP3 and CMIP5.  The analysis of NTA SST bias in the study of Grodsky et al. 519 

(2012) showed that the atmospheric components of CCSM3 and CCSM4 have abnormally 520 

intense subtropical high pressure systems and abnormally weak subpolar low pressure systems, 521 

and these SLP biases cause excessively strong surface winds and result in too large latent heat 522 

loss and cold SST bias throughout the NTA basin. We examine this process among 19 CGCMs of 523 

CMIP5 and we find that excessively strong subtropical highs are able to explain the cold SST 524 

bias in the NTA region for most CGCMs. However, a positive bias in the North Atlantic 525 

subtropical high (NASH) is unable to explain the cold SST bias in the AWP region because the 526 

excess latent heat loss is much smaller compared with observations possibly due to weaker sea 527 

surface specific humidity gradient. We adopt the same latent heat flux dataset (IFREMER) used 528 

in Grodsky et al. (2012) as observation reference instead of the latent heat flux data from 20CR 529 

for consistency. However, if we use the latent heat flux data of 20CR and NCEP reanalysis 530 

datasets as reference, the excess latent heat loss is also much smaller in the AWP region (Figures 531 
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are not shown) and our conclusion is consistency for these different datasets.  532 

We find that among the CGCMs of CMIP5, SST is positively correlated with high-level 533 

cloud fraction and downward longwave radiation in the AWP region. It indicates that lower 534 

(higher) AWP SST contributes to less (more) high-level cloud fraction and thus leads to less 535 

(more) reflected downward longwave radiation.  The decreased (increased) longwave radiation 536 

can further decrease (warm) the AWP SST.  This positive feedback may erroneously alleviate the 537 

AWP SST cold bias when excessively high-level clouds are simulated. The origin of the cold 538 

bias in the AWP is still uncertain. A recently published paper of Fasullo and Trenberth (2012) 539 

suggests that the present models with low climate sensitivity perform more inadequately in 540 

replicating climate teleconnections between the tropics and subtropics, and are identifiably 541 

biased. They pointed out that the relative contributions of various cloud types to the overall cloud 542 

feebback and the sources of biases in the vertical relative humidity and cloud distributions in 543 

models are two of major questions to be solved for correctly simulating climate sensitivity. These 544 

two questions may also be of fundamental importance to trace the origin of the topical SST bias 545 

in models. 546 
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Table 1. The 19 models of CMIP5 involved in this study and their development institutions, 868 

letter denotations, short names used throughout the paper, and time periods of historical 869 

simulations. CMIP3 models are also listed by institutions for reference. 870 

Institution Letter 
denotation  

     Abbreviation Historical Run  CMIP3 model 
names defined 
in LWLE12 

Canadian Centre for Climate 
Modelling and Analysis, Canada 

B  CCCMA-
CanESM2 

1850-2005 CGCMt47, 
CGCMt63 

National Center for Atmospheric 
Research, USA 

C  NCAR-CCSM4 1850-2005 CCSM3, 
Npcm1 

CSIRO (Commonwealth Scientific 
and Industrial Research 
Organisation, Australia), and BOM 
(Bureau of Meteorology, Australia)  

D CSIRO-MK3.6.0 1850-2005 CSIRO30, 
CSIRO35 

Geophysical Fluid Dynamics 
Laboratory, USA 

E GFDL-CM3 1860-2005 GFDL20, 
GFDL21 F GFDL-ESM2G 1861-2005 

G GFDL-ESM2M 1861-2005 
NASA Goddard Institute for Space 
Studies, USA 

H GISS-E2H 1850-2005 GISSaom, 
GISSer I GISS-E2R 1850-2005 

Met Office Hadley Centre, United 
Kingdom 

J MOHC-HadCM3 1859-2005 Uhadcm3, 
Uhadgem1 K MOHC-

HadGEM2-CC 
1859-2005 

L MOHC-
HadGEM2-ES 

1859-2005 

Institute for Numerical Mathematics, 
Russia 

M INM-CM4 1850-2005 INMCM3 

Institut Pierre Simon Laplace, France N IPSL-CM5A-LR 1850-2005 IPSL 
O IPSL-CM5A-MR 1850-2005 
P IPSL-CM5B-LR 1850-2005 

Max Planck Institute for Meteorology 
(MPI-M), Germany 

Q MPI-ESM-LR 1850-2005 MPI 
R MPI-ESM-P 1850-2005 

Meteorological Research Institute, 
Japan 

S MRI-CGCM3 1850-2005 MRI 

Norwegian Climate Centre , Norway T NCC-
NorESM1M 

1850-2005  

*Letter A stands for observations. 871 

 872 
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Table. 2  First four rEOF modes of ERSST and CGCMs with their variances. 873 

Obs. and models REOF1 REOF2 rEOF3 rEOF4 

ERSST STA-EQ: 17.0 NTA: 13.0 STA-BG: 10.3 SSA: 10.2 

CCCMA-
CanESM2 

SSA: 20.0 NTA: 14.1 STA: 13.3 NTAII: 9.7 

NCAR-CCSM4* STA-EQ: 24.4 SSA: 12.4 STA-BG: 10.1 NTA: 10.0 

CSIRO-MK3.6.0 NTAII: 21.3 NTA: 15.3 SSA: 13.5 STA: 11.0 

GFDL-CM3 STA: 34.4 NTA: 10.7 \: 9.0 \: 8.5 

GFDL-ESM2G STA: 20.6 NTA: 13.6 NTAII: 10.1 \: 10.1 

GFDL-ESM2M STA-EQ: 35.4 \: 13.0 NTA: 9.6 STA-BG: 6.7 

GISS-E2H* STA-BG: 20.6 NTA: 15.6 STA-EQ: 13.9 SSA: 8.6 

GISS-E2R STA-BG: 20.0 NTAII: 12.4 NTA: 11.2 SSA: 10.9 

MOHC-HadCM3 NTA: 15.9 \: 14.3 NTAII: 13.2 STA: 12.1 

MOHC-
HadGEM2-CC 

NTA: 19.3 STA: 19.2 \: 8.6 \: 7.5 

MOHC-
HadGEM2-ES 

NTA: 20.6 STA: 18.4 \: 8.1 SSA: 4.9 

INM-CM4 STA: 15.4 NTA: 11.2 SSA: 8.8 \: 7.4 

IPSL-CM5A-LR NTA: 22.4 STA: 20.5 NTAII: 13.7 SSA: 12.3 

IPSL-CM5A-MR NTA: 24.2 STA: 17.0 SSA: 13.3 NTAII: 10.3 

IPSL-CM5B-LR NTA: 41.8 NTAII: 9.9 STA: 9.2 SSA: 5.7 

MPI-ESM-LR STA: 17.4 \: 17.3 NTA: 13.0 NTAII: 7.9 

MPI-ESM-P STA: 19.4 NTA: 11.7 \: 10.8 NTAII: 6.9 

MRI-CGCM3 NTAII: 15.9 STA: 13.5 NTA: 10.7 SSA: 6.8 

NCC-
NorESM1M 

STA-EQ: 27.5 \: 14.9 STA-BG: 10.2 NTAII: 8.5 

STA: southern tropical Atlantic mode. NTA: northern tropical Atlantic mode. SSA: subtropical 874 
South Atlantic mode.  STA-EQ:  equatorial component of southern tropical Atlantic mode. STA-875 
BG:  Benguela component of southern tropical Atlantic mode. NTA II: the second mode of NTA 876 
caused by model bias. 877 
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Table 3. Summary of best performance models in each aspect of variability evaluation. 878 

Criteria Best performance models 

Seasonal Cycle NCAR-CCSM4, CSIRO-MK360, GISS-E2H, 

GISS-E2R, MOHC-HadCM3, MPI-ESM-LR, 

MPI-ESM-P 

rEOF Analysis NCAR-CCSM4, GISS-E2H 

Multidecadal Variability (roughly estimated) CanESM2, CSIRO-MK360, GFDL-CM3, 

GFDL-ESM2G, GISS-E2H, GISS-E2R, 

HadGEM2CC, INMCM4, IPSL-CM5A-LR, 

IPSL-CM5A-MR, IPSL-CM5B-LR, MPI-

ESM-LR, MPI-ESM-P, NCC-NorESM1M 

Remote connection with ENSO 

and NAO 

NCAR-CCSM4, GISS-E2H, GISS-E2R, NCC-

NorESM1M 
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                             879 
Figure 1 Climatology of (a) AWPAI, (b) AWPTI, AWP box averaged (c) net surface heat flux of 880 
20CR, (d) net surface heat flux of CMIP5 minus CMIP3, (e) net surface heat flux of CMIP5 881 
minus 20CR, (f) net surface heat flux of CMIP3 minus 20CR. Positive value of heat fluxes mean 882 
ocean gains heat. AWP box is defined within 5⁰N-30⁰N and land-40⁰W. Black line with circle is 883 
for ERSST in (a). Blue line is ensemble of CMIP5 CGCMs. Grey dash is ensemble of CMIP3 884 
models. Model spreads are represented by vertical bars. Black dashed line in (d), (e) and (f) 885 
stands for AWPTI*10 in oC. 886 
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 887 
 888 
 889 
Figure 2 AWP box averaged net surface heat flux bias and AWPTI bias for selected models: 890 
(a) GISSE2R_CMIP5, (b) GISSER_CMIP3, (c) CCSM4_CMIP5, (d) CCSM3_CMIP3, (e) 891 
GFDLCM3_CMIP5, (f) GFDLCM2_CMIP3, and (g) CSIRO36_CMIP5. Heat flux bias is in 892 
Unit W/m2. AWPTI is in Unit oC. 893 
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 894 
 895 
 896 

Figure 3 Observational SST and model SST bias in four seasons. Shown are (a1-a4) ERSST SST 897 
averaged in four seasons, (b1-b4) the seasonal SST bias of the 19 model ensemble, and (c1-c4, 898 
d1-d4, e1-e4) the seasonal SST bias for selected models. Unit is °C. AWPTI is defined in the 899 
domain from coast to 40˚W and from 5˚N to 30˚N. 900 
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 901 

 902 
Figure 4. Climatology of SLP and model ensemble bias. (a1-4) are climatology of SLP. Shading 903 
stands for model ensemble. Contour lines stand for 20CR. (b1-4) are model ensemble bias for 904 
four seasons compared with 20CR. Unit is hPa. 905 
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 906 
Figure 5 Climatology of surface winds and model ensemble bias. (a1-4) are climatology of 907 
surface winds. Shading stands for wind speed of model ensemble. Vectors stand for wind vectors 908 
of model ensemble. Contour lines stand for wind speed of IFREMER data. (b1-4) are model 909 
ensemble bias for four seasons compared with IFREMER data. Shading stands for wind speed 910 
bias and vectors stand for wind vector bias. Unit is m/s. 911 
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 912 
Figure 6 Climatology of latent heat flux and model ensemble bias. (a1-4) are climatology of 913 
latent heat flux. Shading stands for model ensemble. Contour lines stand for IFREMER data. 914 
(b1-4) are model ensemble bias for four seasons compared with IFREMER data. Unit is W/m2. 915 
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 916 
Figure 7 Climatology of pressure vertical velocity and model ensemble bias. (a1-4) are 917 
climatology of pressure vertical velocity. Shading stands for model ensemble. Contour lines 918 
stand for 20CR. (b1-4) are model ensemble bias for four seasons compared with 20CR.The sign 919 
of pressure vertical velocity is reversed and subsidence corresponds to negative pressure 920 
velocity. Unit is Pa/s. 921 
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 922 
Figure 8 Multi-model scatter plot in JASO of (a) net longwave radiation vs. AWPTI, (b) 923 
downward longwave radiation vs. AWPTI, and (c) high level cloud fraction vs. AWPTI. Each 924 
point stands for one model. The black line shows the least squares linear fit to all points.  925 

926 
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 927 

 928 
 929 
 930 
Figure 9 Diagram of different radiative properties of low and high level clouds and their 931 
associated feedback with SST in the AWP region.  932 

933 
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 934 

 935 
Figure 10 Spectrum analysis of AWPTI. (a) spectrum of ERSST. Y axis is power. X axis is the 936 
wavelet period in years. The dashed line indicates 95% significance level. (b) (c), (d) and (e) are 937 
the same as (a) for the ensemble of 19 models with each model shown in grey line, Group I, 938 
Group II, Group III and VI models respectively. 939 
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 940 
Figure 11 AWPTI standard deviation of observations and CGCMs. Blue bar shows interannual 941 
band. Red bar shows decadal and longer time scale band. 942 
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 943 
Figure 12 rEOF analysis of tropical Atlantic SST in ASO months. Shown are (a1) first mode, 944 
(a2) second mode, (a3) third mode and (a4) fourth mode of ERSST. Same as (a1-4), (b1-4) are 945 
for NCAR-CCSM4, (c1-4) are for GISS-E2H, (d1-4) are for MRI-CGCM3. 946 
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 947 
Figure 13 Pattern of global SST difference between large AWP years and small AWP years on 948 
the decadal timescale and above. Shown are (a) ERSST, (b) ensemble of 19 models, (c) NCAR-949 
CCSM4 and (d) GFDL-CM3. Unit is oC. The threshold value of AWPTI to define large(small) 950 
AWP years is 0.1oC (-0.1oC).  951 
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 952 
Figure 14 Regression map of surface wind stress (vector, N/m2), net surface heat flux (positive 953 
into the ocean with solid contour line, W/m2), and SST (shading contour, oC) averaged in 954 
longitude onto Niño-3 Index (DJF) and onto negative NAO index (DJFM). Shown are (a1) 955 
regression map onto Niño-3 Index for observations, (a2) regression map onto negative NAO 956 
Index for observations, (b1) regression map onto Niño-3 Index for ensemble of 19 models, (b2) 957 
regression map onto negative NAO Index for ensemble, (c), (d) and (e) are the same as (b) for 958 
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selected models. 959 
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 960 
 961 
Figure 15 (a) A Taylor diagram of statistics describing the remote influenced patterns of ENSO 962 
on AWP in CGCMs as shown in Figure 14.a.1. On this diagram, the radial co-ordinate gives the 963 
magnitude of total standard deviation of lag regression coefficients in the domain of Figure 964 
14.a.1 for each model normalized by the standard deviation of observation, and the angular co-965 
ordinate gives the correlation of the regression coefficients of each model with the regression 966 
coefficients of observation. The distance between the reference point “A” of observation and any 967 
model's point (B to T defined in Table 1) is proportional to the root mean square error shown by 968 
the green dashed lines. (b) Same as (a), but the statistics of Taylor diagram describing the remote 969 
influenced patterns of NAO on AWP in CGCMs as shown in Figure 14.a.2. 970 


