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ABSTRACT 

A simple dynamic model is proposed to illustrate the multidecadal oscillation of the Atlantic 

thermohaline circulation. The proposed oscillation relies on alternating actions of positive and 

negative feedbacks, which are operated by a slow adjustment of the ocean circulation and the 

associated time delay in the advective flux response to a change in meridional density gradient. 

The key element of the oscillation is the time delay, which is conceptually related to the basin-

crossing time of long Rossby waves in the high-latitude North Atlantic. For a sufficiently long 

time delay, the solution becomes unstable in some regions of model parameter space and 

oscillates with a period of about twice the delay time. 
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1. Introduction 

The objective of this note is to propose a simple dynamic model for the multidecadal 

oscillation of the Atlantic thermohaline circulation (THC), which is commonly manifested in 

general circulation model simulations (e.g., Delworth et al. 1993; Dai et al. 2005; Knight et al. 

2005). By definition, a self-sustained oscillation requires alternating actions of positive and 

negative feedbacks. Here, it is proposed that the required feedbacks for the multidecadal 

oscillation of the THC are provided by a slow adjustment of the ocean circulation and the 

associated time-delayed advective flux in response to a change in meridional density gradient.  A 

four-box model is used to illustrate the proposed oscillation.  

 

2. The four-box model 

The North Atlantic Ocean is simplified to four boxes with two-layer structures in the high- 

and low-latitudes, as shown in Figure 1. The meridional density gradient is always positive, thus 

the volume transport must be northward in the upper layer and southward in the lower layer. 

Conservation of mass dictates that the volume transport at the mid-depth is downward in the 

high-latitude and upward in the low-latitude. Therefore, volume integration of the density 

conservation equation for each box yields  
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where ρ1, ρ2, ρ3 and ρ4 are densities of the upper low-latitude box, upper high-latitude box, lower 

high-latitude box, and lower low-latitude box, respectively; V is the volume transport (per unit 

volume) in response to the meridional density gradient; q is density flux into the upper high-

latitude box (or out of the upper low-latitude box); r is a damping coefficient; kv is a vertical 

diffusion coefficient; H is the model ocean depth divided by 2; F1, F2, F3 and F4 represent other 

forcing terms such as horizontal diffusion and convective mixing. Note that a cubic form of 

dissipation is used instead of a linear form to prevent infinite growth of linearly unstable 

solutions and model drifts as in Suarez and Schopf (1988) for the ENSO oscillator.  

Now, a separate equation for V is required to solve the equations (1)-(4). Using the 

geostrophic balance and hydrostatic relation, the zonal baroclinic (i.e., upper minus lower layer) 

velocity in the mid-latitude corresponding to the north-south density gradient can be written as  

( 1423ˆ ρρ
ρ

−=
yoo Lf

gHu ) ,                                                      (5) 

where g is the gravitational acceleration; ρo is a reference density; fo is the planetary vorticity in 

the mid-latitude; Ly is the meridional length of the model domain divided by 2; ρ14 = (ρ1 + ρ4)/2, 

and ρ23 = (ρ2 + ρ3)/2. As discussed in Killworth (1985), the baroclinic meridional motions are 

established after the adjustment time, which depends on the basin-crossing time of long 

baroclinic Rossby wave. Therefore, in this study, the meridional volume transport (per unit 

volume) is represented by using the equation (5) with a time delay: 
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where α is a constant on the order of 1; and δ is the time delay, which is about the basin-crossing 

time of long baroclinic Rossby waves.  
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Scaling time by , ρ by )ˆ/(2 2 HgLf yo )2/(ˆ 2
yoLrfHg , and q by 321 )]2/(ˆ[ yoLfHgr − , the 

following non-dimensional equations can be derived: 
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where = ĝ og ρρ /∆  ( ρ∆  is the scale of north-south density difference) and the non-dimensional 

vertical diffusivity ko = .  )ˆ/(2 32 HgLfk yov

 

3. The one-equation model 

In order to gain some insights on the behavior of the nonlinear system of equations (7)-(10), 

a simplified one-equation model is derived and evaluated here. Specifically, it is assumed that ρ2, 

ρ3, and ρ4 are close to each other enough to be represented as a single variable 

. This is not an unreasonable assumption because the convective process 

maintains ρ

3/)( 432
*
2 ρρρρ ++=

3 as close to ρ2, and the advective flux from the box-3 to box-4 also keeps ρ4 close to 

ρ3 for a sufficiently small value of ko. Then, the density budget equations (7)-(10) can be 

simplified to a single equation: 
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where , and the nonlinear dissipation term is slightly modified from its original form.  

If δ = 0, this equation has a positive steady state solution. By neglecting the nonlinear dissipation 

term for the sake of illustration, the positive steady solution 
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The linear stability of oρ̂  in the equation (11) can be studied by replacing )(ˆ tρ  in (11) with the 

sum of the stationary solution oρ̂  and the perturbation )(ˆ tρ′ . Retaining only the linear terms, the 

perturbation equation can be written as  
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Seeking solutions of the form )exp(ˆ tσρ ∝′  with ir iσσσ += , the following equations can be 

derived: 
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If σr is positive, the first term in the RHS of (14) is always larger than the second term, thus the 

equation (14) cannot be satisfied. Therefore, σr is negative regardless of σi. This means that the 

simplified density budget equation (11) is always stable around oρ̂ . However, it is shown in the 

next section that the nonlinear system of equations (7)-(10) is unstable for a sufficiently large 

value of δ. This suggests that the density budgets in the lower layers (box-3 and -4) must be fully 

incorporated to resolve the multidecadal THC oscillation.  

 

4. Numerical solutions 
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The behavior of the nonlinear equations (7) - (10) is explored numerically using a fourth-

order Runge-Kutta scheme. When the upper layer is heavier than the layer below, the convective 

mixing is achieved by completely mixing the two layers. Horizontal diffusion is turned off for 

simplicity because its linear damping effect on the meridional density gradient does not add 

much value. Figure 2 shows three model solutions for δ = 0, 7 and 20, when α, q and ko are set to 

2.0, 0.1 and 0.2, respectively. The dashed lines are the statistical equilibrium values. For small 

values of δ, the solution achieves a stable state. For a larger value of δ, on the other hand, the 

solution oscillates with a period of about twice the delay time (hereafter referred to as delayed 

advective oscillator). 

Obviously, at issue is why the solution oscillates when the advective delay is sufficiently 

long. To answer this question, the equation for the density gradient between the high-latitude 

boxes and low-latitude boxes is diagnosed here: 
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Figure 3 shows [ρ23 - ρ14](t) and [ρ23 - ρ14](t-δ) in the upper panel. The storage term in the LHS 

of equation (16) and the advective density gradient flux, surface density flux gradient and 

dissipation terms in the RHS of equation (16) are shown in the lower panel. In this case, α, q and 

ko are set to 2.0, 0.1 and 0.2, respectively, and the time delay δ is set to 20.  

Table 1 summarizes the temporal evolutions of the meridional density gradient, the advective 

density gradient flux, and the sign of advective feedback during one cycle of the oscillation 

between the five points (A, B, C, D, and E) as indicated in Figure 3. As illustrated Table 1, the 

delayed advective oscillator is maintained by alternating actions of amplification (i.e., positive 

feedback) and stabilization (i.e., negative feedback) through the delayed advective density 
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gradient flux. In one cycle of the oscillation, there are two periods of amplification separated by 

two periods of stabilization.  

The first amplification occurs when the meridional density gradient increases above the 

equilibrium point because the advective density gradient flux is smaller than the surface density 

flux gradient (A-B). This is followed by the first stabilization period, during which the 

meridional density gradient swings back from its maximum point toward the equilibrium point 

because the advective density gradient flux is larger than the surface density flux gradient (B-C). 

Then, the second amplification occurs, during which the meridional density gradient decreases 

below the equilibrium point because the advective density gradient flux is larger than the surface 

density flux gradient (C-D). During the second stabilization period, the meridional density 

gradient swings back from its minimum point toward the equilibrium point because the advective 

density gradient flux is smaller than the surface density flux gradient (D-E). This cycle then 

repeats. In summary, the meridional density gradient anomaly and advective density gradient 

flux anomaly are negatively (positively) correlated during the positive (negative) feedback 

periods as indicated in Table 1.  

To have an idea about the actual time scale of the delayed advective oscillator, let us consider 

typical parameter values for the North Atlantic: Lx = 5×106m; Ly=2.0×106m;  = 10ĝ -2m s-1; fo = 

10-4 s-1; β = 2×10-11 m-1 s-1; and H = 2000m. According to previous general circulation model 

simulations, the density fluctuation associated with the multidecadal oscillation of THC is 

mainly in the high-latitude North Atlantic around 40oN ~ 65oN (e.g., Delworth et al. 1993) and 

propagates slowly to the west (e.g., Dijkstra et al. 2006). Therefore, the long baroclinic Rossby 

wave speed c (= ; where )2/( 2
ofHg β′ g′  is the reduced gravity) is computed separately based on 

typical parameter values for the high-latitude North Atlantic around 50oN:  = 5×10g′ -3m s-1; and 
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fo = 1.1×10-4 s-1. Then, the basin-crossing time can be estimate by Lx/c, which is about 20 years 

in this case. Assuming that the delay time is on the order of the basin-crossing time, the period of 

delayed advective oscillator is about 40 years, which is twice the delay time. Using the time 

scale,  = 1.3years, the nondimensional delay time δ is approximately 15.  )ˆ/(2 2 HgLf yo

 

5. Impacts of external forcing 

Now, the responses of delayed advective oscillator to low frequency external forcing 

patterns, such as freshwater flux into the high-latitude North Atlantic, and to high frequency 

external forcing patterns, such as weather noise related to the North Atlantic Oscillation (NAO), 

are explored here. Three low-frequency forcing experiments are performed, i.e., (a) density flux 

out of the high-latitude North Atlantic (i.e., freshening or warming), (b) complete shutdown of 

the THC, and (c) density flux into the high-latitude North Atlantic (i.e., cooling or net 

evaporation). For each experiment, the following form of density flux is used only in the high-

latitude (i.e., box-2): 

2*
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tqqq o  ,                                                 (17) 

where t* = t/δ, and qo is set to -q/2, -2q, and q/2 for experiments (a), (b) and (c), respectively. 

Note that the surface flux in the low-latitude is kept constant in these experiments.  

Figure 4a shows that the THC may slow down due to the density flux out of the high-latitude 

(i.e., freshening or warming), but it swings back to the equilibrium solution once the external 

forcing is removed. An interesting feature is that the amplitude of the delayed advective 

oscillator is reduced substantially and its recovery is extremely slow. As shown in Figure 4b, the 

THC completely shuts down as the surface flux in the high-latitude box is reduced to match that 
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in the low-latitude box. The THC swings back to the equilibrium solution after the external 

forcing is removed. However, the delayed advective oscillator is completely disrupted. 

Interestingly, the external density flux out of the high-latitude North Atlantic (i.e., cooling or net 

evaporation) has only a minor impact on the THC strength as shown in Figure 4c. However, the 

delayed advective oscillation is weakened (but not as much as in Figure 4a) and slowly recovers 

once the external forcing is removed. 

Next, the impact of high frequency forcing on the delayed advective oscillator is explored. It 

is widely believed that the high frequency portion of the NAO originates from weather noise. 

Nevertheless, the NAO has a coherent spatial structure with a dipole-like meridional pattern of 

the sea level pressure (Hurrell 1995). Due to this coherent spatial pattern, if the high-latitude is 

cooled (warmed), the mid-latitude is warmed (cooled) during a positive (negative) phase of the 

NAO. Therefore, the high frequency forcing of the NAO is represented here as a random noise 

surface flux with anti-symmetric meridional pattern; that is, the sign of random forcing is 

opposite in the two latitude boxes but with the same amplitude. Note that the random noise 

forcing does not produce a net surface flux into or out of the system. The amplitude of the 

random forcing is set to q/2.  

Figure 5 shows the model solutions (a) with and (b) without the random forcing, and (c) with 

both the low- and high-frequency forcing for α=1.2, q=0.1, ko=0.2, and δ=20. In the last case, the 

low frequency forcing is added only in the high-latitude (i.e., box-2) using the equation (17) with 

qo = -1.5q. As shown in Figure 5b, the oscillation is damped out without the weather noise for 

the given parameter values. Interestingly, if the weather noise is introduced, the delayed 

advective oscillator with the period of ~2δ can sustain its amplitude of up to about 35% of the 

mean. It is also interesting to note that, under the weather noise forcing, the amplitude of the 
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oscillation fluctuates at a very low-frequency, which amounts to the multicentennial time scale 

using realistic parameter values for the North Atlantic. Figure 5c shows that even when the 

external forcing is large enough to nearly shutdown the THC, the weather noise can invigorate 

the delayed advective oscillator once the external forcing is removed. 

In summary, the THC is remarkably stable because it always swings back to its original state 

once external forcing is removed (this conclusion may not be valid if both the temperature and 

salinity are considered as in Stommel 1961). The delayed advective oscillator is, on the other 

hand, very fragile. If external forcing is large enough, it can virtually wipe out the delayed 

advective oscillator. The recovery of the delayed advective oscillator is extremely sluggish, 

suggesting that the growth rate of the delayed advective oscillator is very small. However, these 

are characteristics of the delayed advective oscillator in its pure form. If the NAO-like weather 

noise forcing is added to the system, the behavior of the delayed advective oscillator is 

drastically changed. In particular, relatively large amplitude of the weather noise (50% of the 

mean is used in the experiment) can sustain an active delayed advective oscillation of an 

otherwise stable system. The THC can still shut down if external forcing is large enough. 

However, the weather noise can quickly invigorate the delayed advective oscillator once the 

external forcing is removed. Finally the weather noise can also produces a very low-frequency 

fluctuation of the delayed advective oscillation at the multicentennial time scale.  

An important question is why the delayed advective oscillator is excited by the NAO-like 

weather noise. The simple stochastic climate model of Hesselmann (1976) provides a plausible 

explanation for this question. It is well known after Hesselmann (1976) that a random noise 

atmospheric forcing produces a red noise spectrum of ocean temperature via ocean memory. If 

this theory is applied to the four-box model, it means that a random surface forcing can produce 
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large amplitude signals in the meridional density gradient field, (ρ23 - ρ14), at low frequencies 

including at the frequency of delayed advective oscillator, ω ~ 0.5δ-1. Therefore, the delayed 

advective oscillation can be excited and maintained by the weather noise even if it is subject to a 

damped oscillation as shown in Figure 5a.  

 

6. Linear stability analysis 

To better understand how the four parameters, α, q, ko, and δ influence the delayed advective 

oscillator, a linear stability analysis of the nonlinear system of equations (7)-(10) is performed. 

First, the stationary solutions with δ=0 are obtained by numerically integrating the equations (7)-

(10). Replacing the solutions with the sum of stationary solution and perturbation, and retaining 

only the linear terms can derive the perturbation equations (not shown). Seeking solutions of the 

form )exp( tckk σρ =′  with k=1, 2, 3 and 4, and ir iσσσ += , a matrix equation, , can be 

derived. The determinant of the matrix A must vanish in order for nontrivial eigenfunctions to 

exist: this yields an equation for the calculation of the complex eigenvalue σ for chosen values of 

α, δ, k

0=⋅CA

o and q. Since the matrix A contains the eigenvalue σ and its exponential form, exp(-σδ), 

an iterative Muller’s method is used to obtain the eigenvalue σ.   

Figure 6 shows the neutral curves (a) on the α-δ plane for q=0.1 and ko=0.2, (b) on the ko-δ 

plane for α=2.0 and q=0.1, and (c) on the q-δ plane for α=2.0 and ko=0.2. For a given value of δ, 

increasing α and decreasing ko destabilize the system. These results are not surprising since α is 

proportional to the meridional volume transport, which provides the positive feedback required 

to maintain the delayed advective oscillator, thus serves as a growth rate, and ko serves as a 

damping rate. However, it is important to note that the neutral curve on the q-δ plane is not 

monotonic. For a given value of δ, the system is unstable only when q is within a certain range. 
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This strongly supports an idea that the delayed advective oscillator exists via a delicate balance 

of various terms, and also nicely explains why the delayed advective oscillator (in its pure form) 

is so fragile under the impacts of external forcing as illustrated in Figure 4.  

 

7. Summary and Discussions  

Perhaps, the four-box model presented here is one of the simplest dynamic models for the 

multidecadal oscillation of the THC, which is commonly manifested in general circulation model 

simulations. Despite the overly simplified nature of the model, this minimal complexity model 

describes effectively the mechanism of the delayed advective oscillator, which appears to be an 

important stepping-stone toward our understanding of the THC and its multidecadal oscillation.  

The key element of the delayed advective oscillator is the time delay in the advective flux 

response to a change in meridional density gradient. This time delay, which is conceptually 

related to the basin-crossing time of long baroclinic Rossby waves at the high-latitude North 

Atlantic, allows alternating actions of positive and negative advective feedbacks and thus gives 

rise to a self-sustained oscillation. An important signature (or indicator) of the delayed advective 

oscillator is that the meridional density gradient anomaly and meridional advective density 

gradient flux anomaly are negatively (positively) correlated during the positive (negative) 

feedback periods.  

Related to the fundamental issue of decadal predictability of the THC, an apparently 

important and practical question is whether the multidecadal oscillation of the THC is self-

sustained (e.g., Greatbatch and Zhang 1995) or damped, in which case the NAO-like weather 

noise may sustain the oscillation (e.g., Capotondi and Holland 1997; Eden and Greatbatch 2003). 

The linear stability analysis of the delayed advective oscillator may help us better understand 
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under what conditions (or regions of the model parameter space for α, ko, q and δ) the THC 

switches between an unstable state to a damped regime.  

The delayed advective oscillator can be compared to the delayed action oscillator for ENSO 

(Suarez and Schopf 1988) because the key element in both cases is the oceanic Rossby wave 

transit effects. However, there is an important distinction between the two oscillators. In the 

delayed action oscillator, the equatorial oceanic Rossby wave transit effects provide a negative 

delayed feedback to an otherwise linearly amplifying system. In the delayed advective oscillator, 

the advective density gradient flux, which is delayed by the oceanic Rossby wave transit effects, 

provides both the negative and positive feedbacks for the oscillation. 

Finally, it is important to point out that, for a given positive (negative) anomaly of meridional 

density gradient, if there is no time delay, the meridional salt advection has a destabilizing effect 

whereas the meridional heat transport has a stabilizing effect. Griffies and Tziperman (1995) 

showed that a phase-lag between the salt and heat advection could support a damped oscillation. 

This mechanism, which is obviously missing in our four-box model, can be readily explored by 

expanding the density equations (7)-(10) to two sets of equations for salinity and temperature 

equations. 
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Table 1. The meridional density gradient ([ρ23-
ρ14](t)), the advective density gradient flux and 
the sign of advective feedback during the 
periods between the five points (A, B, C, D, and 
E) as indicated in Figure 3. “ ” and “ ” indicate 
that the value is above and below the 
equilibrium solution, respectively. The second 
and third columns are negatively correlated 
during (+) feedback periods, and positively 
correlated during (−) feedback periods.  

 

 

Time  [ρ23-ρ14](t) -Advection Feedback 
(A) - (B)     (+) 
(B) - (C)     (−) 
(C) - (D)     (+) 
(D) - (E)     (−) 
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Figure 1. The North Atlantic Ocean is simplified with four boxes. Since the meridional density 

gradient is always positive, the volume transport (per unit volume) V is always northward in the 

upper layer and southward in the lower layer. ρ1, ρ2, ρ3 and ρ4 are densities of the upper low-

latitude box, upper high-latitude box, lower high-latitude box, and lower low-latitude box, 

respectively. q is density flux into the upper high-latitude box (or out of the upper low-latitude 

box).  

 

Figure 2. Three model solutions, (ρ23 - ρ14), for (a) δ = 0, (b) δ = 7 and (c) δ = 20. α, q and ko are 

set to 2.0, 0.1, and 0.2, respectively. The dashed lines are the statistical equilibrium values.  

 

Figure 3. The model solutions [ρ23 - ρ14](t) and [ρ23 - ρ14](t-δ) are shown in the upper panel. The 

storage term in the LHS of equation (16) and the advective density gradient flux, surface flux 

gradient and dissipation terms in the RHS of equation (16) are shown in the lower panel. δ, α, q 

and ko are set to 20, 2.0, 0.1, and 0.2, respectively. The symbols (+) and (−) represent the period 

of positive and negative feedback, respectively. See text and Table 1 for the description of 

density budgets between the points, (A), (B), (C), (D) and (E).  

 

Figure 4. The responses of the delayed advective oscillator to the external forcing of (a) density 

flux out of the high-latitude North Atlantic (i.e., freshening or warming), (b) complete shutdown 

of the THC, and (c) density flux into the high-latitude North Atlantic (i.e., cooling or net 

evaporation). The amplitude of the external forcing qo is set to -q/2, -2q, and q/2 for (a), (b) and 

(c), respectively. δ, α, q and ko are set to 20, 2.0, 0.1, and 0.2, respectively.  
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Figure 5. The behavior of delayed advective oscillator (a) with and (b) without the random noise 

forcing, and for (c) a case with both the low- and high-frequency forcing. The amplitude of the 

random forcing is set to q/2 for (a) and (c). For (c), qo = -1.5q. δ, α, q and ko are set to 20, 1.2, 

0.1, and 0.2, respectively.  

 

Figure 6. Neutral stability curves (a) on the α-δ plane for q=0.1 and ko=0.2, (b) on the ko-δ plane 

for α=2.0 and q=0.1, and (c) on the q-δ plane for α=2.0 and ko=0.2. 
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Figure 1. The North Atlantic Ocean is simplified with four boxes. Since the meridional density 

gradient is always positive, the volume transport (per unit volume) V is always northward in the 

upper layer and southward in the lower layer. ρ1, ρ2, ρ3 and ρ4 are densities of the upper low-

latitude box, upper high-latitude box, lower high-latitude box, and lower low-latitude box, 

respectively. q is density flux into the upper high-latitude box (or out of the upper low-latitude 

box).  
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Figure 2. Three model solutions, (ρ23 - ρ14), for (a) δ = 0, (b) δ = 7 and (c) δ = 20. α, q and ko are 

set to 2.0, 0.1, and 0.2, respectively. The dashed lines are the statistical equilibrium values.  
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Figure 3. The model solutions [ρ23 - ρ14](t) and [ρ23 - ρ14](t-δ) are shown in the upper panel. The 

storage term in the LHS of equation (16) and the advective flux divergence, surface flux and 

dissipation terms in the RHS of equation (16) are shown in the lower panel. δ, α, q and ko are set 

to 20, 2.0, 0.1, and 0.2, respectively. The symbols (+) and (-) represent the period of positive and 

negative feedback, respectively. See text and Table 1 for the description of density budgets 

between the points, (A), (B), (C), (D) and (E).  
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Figure 4. The responses of the delayed advective oscillator to the external forcing of (a) density 

flux out of the high-latitude North Atlantic (i.e., freshening or warming), (b) complete shutdown 

of THC, and (c) density flux into the high-latitude North Atlantic (i.e., cooling or net 

evaporation). The amplitude of the external forcing qo is set to -q/2, -2q, and q/2 for (a), (b) and 

(c), respectively. δ, α, q and ko are set to 20, 2.0, 0.1, and 0.2, respectively.  
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Figure 5. The behavior of delayed advective oscillator (a) with and (b) without the random noise 

forcing, and for (c) a case with both the low- and high-frequency forcing. The amplitude of the 

random forcing is set to q/2 for (a) and (c). For (c), qo = -1.5q. δ, α, q and ko are set to 20, 1.2, 

0.1, and 0.2, respectively.  
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Figure 6. Neutral stability curves (a) on the α-δ plane for q=0.1 and ko=0.2, (b) on the ko-δ plane 

for α=2.0 and q=0.1, and (c) on the q-δ plane for α=2.0 and ko=0.2. 
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