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ABSTRACT

A variational inverse problem is solved using polynomial chaos expansions to infer several critical var-

iables in the Hybrid Coordinate Ocean Model’s (HYCOM’s) wind drag parameterization. This alternative

to the Bayesian inference approach in Sraj et al. avoids the complications of constructing the full posterior

with Markov chain Monte Carlo sampling. It focuses instead on identifying the center and spread of the

posterior distribution. The present approach leverages the polynomial chaos series to estimate, at very little

extra cost, the gradients and Hessian of the cost function during minimization. The Hessian’s inverse yields

an estimate of the uncertainty in the solution when the latter’s probability density is approximately

Gaussian. The main computational burden is an ensemble of realizations to build the polynomial chaos

expansion; no adjoint code or additional forward model runs are needed once the series is available. The

ensuing optimal parameters are compared to those obtained in Sraj et al. where the full posterior distri-

bution was constructed. The similarities and differences between the new methodology and a traditional

adjoint-based calculation are discussed.

1. Introduction

This article is a follow-up to the parameter estimation

problem presented in Sraj et al. (2013) where the poste-

rior probability distributions of key variables in the wind

drag parameterization at high wind speeds—the drag

multiplicative factor, the saturation wind speed, and the

drag slope after saturation—were inferred from airborne

expendable bathythermograph (AXBT) temperature

profiles collected during Typhoon Fanapi (2010). Sraj

et al. (2013) used a Bayesian inference methodology to

solve the inverse problem, and relied on Markov chain

Monte Carlo (MCMC) to construct the full posterior

distribution. The approach’s efficiency hinged on a faith-

ful polynomial chaos (PC) surrogate to circumvent the

large computational cost associated with the MCMC

sampling [each sample was the equivalent of a forward

Hybrid Coordinate Ocean Model (HYCOM) run and

106 samples were used].

The goal of the present article is to point out that

combining a PC surrogate and a variational approach to

Corresponding author address: Omar Knio, Department of

Mechanical Engineering and Materials Science, Duke University,

Durham, NC 27708.

E-mail: omar.knio@duke.edu

FEBRUARY 2014 SRA J ET AL . 933

DOI: 10.1175/MWR-D-13-00087.1

� 2014 American Meteorological Society

mailto:omar.knio@duke.edu


the inverse problem in Sraj et al. (2013) will easily yield

the center and spread of the posterior distribution,1 will

not incur the costs and complications of the MCMC

step since the full posterior is not constructed, and will

not require an adjoint code (only forward model runs

are needed to build the surrogate). To this end, the

inverse problem in Sraj et al. (2013) is first recast as the

minimization of the log-likelihood cost function pe-

nalizing the misfit between predictions and observa-

tions; an optimization algorithm is then applied to

obtain the solution. A major hurdle is in computing the

gradients needed during optimization, and that usually

necessitates the tedious development and application

of an adjoint code. Here we completely bypass this

hurdle by reusing the surrogate developed in Sraj et al.

(2013) to compute the necessary gradients. The PC

series also delivers the useful but hard-to-compute cost

function’s Hessian at very little extra computational

cost. The Hessian can be used to enhance the robust-

ness and performance of the minimization algorithm,

and to provide an estimate of the spread of the poste-

rior distribution around the optimal values. Once the

surrogate is available, the minimization algorithm can

proceed without the need for further model runs.2 The

methodology is applicable to a wide range of atmospheric

and oceanic models, and is illustrated here for HYCOM,

a full three-dimensional and complex ocean general cir-

culation model.

The present work capitalizes on a key aspect of PC

methods (Ghanem and Spanos 2002; Le Mâıtre and

Knio 2010) (and their close relatives known as stochastic

collocation methods), namely, the availability of a series

representation for the model response to uncertain pa-

rameters. This series can be efficiently manipulated for the

purpose of statistical analysis, data assimilation, and in-

verse modeling. Marzouk et al. (2007) and Marzouk and

Najm (2009) used PC series as efficient surrogates to speed

up the construction of the posterior in Bayesian inference

problems; their work directly influenced Sraj et al. (2013).

PC expansions have been used in ensembleKalman filter–

based data assimilation systems to quickly and reliably

update the covariance matrix (Saad and Ghanem 2009;

Zeng and Zhang 2010; Li and Xiu 2009; Blanchard et al.

2010). They have also been combined with variational

approaches to speed up different aspects of the solu-

tion procedure (Zabaras and Ganapathysubramanian

2008; Southward 2008; Pence et al. 2010). Zabaras and

Ganapathysubramanian (2008) adopted stochastic col-

location series to speed up inverse and optimal design

problem using legacy codes, but relied on finite differ-

encing to calculate the cost function gradients. Southward

(2008) and Pence et al. (2010) were the first to differen-

tiate the polynomial chaos series to update the search

directions in a variational parameter estimation problem

but they do not exploit the Hessian in their calculations.

Mattern et al. (2012) used PC expansions to identify the

optimal parameters of an ecosystem model by visually

locating their cost function minimum; their methodology

could be framed as a minimization algorithm albeit no

gradients were actually computed. The present work

exploits PC series to estimate the cost function gradient

and Hessian by direct differentiation, and the Hessian

is used to approximate the uncertainty in the optimal

parameters; neither MCMC sampling nor adjoint codes

are needed. It represents, to the authors’ knowledge, a

first application of this methodology to a full ocean

general circulation model where actual observations

are used.

The plan for the present article is as follows. Section 2

recasts the problem in Sraj et al. (2013) as a variational

inverse problemwhose iterative solution requires access

to the gradient and Hessian of the cost function; the

computations of these quantities from the PC surrogate

are also described. Section 3 presents the variational

solution to the inverse problem and compares it to the

one obtained in Sraj et al. (2013). Finally, section 4 points

out how the present streamlined approach relates to so-

called adjoint methods, and how it fits into the familiar

framework of data assimilation. For the sake of brevity

we omit a lot of details concerning the drag parameters,

the AXBT data, models, and the PC surrogate, and we

refer the reader to Sraj et al. (2013), Winokur et al.

(2013), and Alexanderian et al. (2012) for more in-depth

discussions.

2. Problem formulation

As described by Sraj et al. (2013), the objective was to

infer the probability density of the parameters a, Vmax,

and m determining the drag coefficient from observa-

tions of temperature in the upper ocean. AXBT data

provide numerous measurements of temperature Ti at

location xi and time ti, where i 5 1, . . . , N over 5 days

during the passage of Typhoon Fanapi (2010). Sraj et al.

(2013) described how to construct polynomial approxi-

mations to simulations Mi 5 Mi (xi, ti, a, Vmax, m) of

those temperatures. Given a distribution of drag pa-

rameters, there is a distribution of differences Mi 2 Ti

that was assumed to be Gaussian for each i. The widths

of these Gaussians might have been assumed to be the

1The center and spread are generally sufficient to gauge the

value and uncertainty of the optimal parameters.
2 The present results were obtained without a single additional

HYCOM run.

934 MONTHLY WEATHER REV IEW VOLUME 142



same for all i, but to allow the information about the wind

stress asmanifested in the ocean’s thermal structure to be

treated differently on the different days during which the

storm passes through the region, different variances s2
d

were allowed for different days d 5 1, . . . , 5; as in Sraj

et al. (2013), s2
d are treated as hyperparameters. The

desired density for the drag parameters and for the s2
d

were constructed by drawing their values repeatedly from

relatively uninformative prior distributions and evaluat-

ing the Gaussians via Bayes’s theorem (Berger 1985;

Epstein 1985; Berliner et al. 2003; Gelman et al. 2004;

Bernardo and Smith 2007):

p(a,Vmax,m, fs2
dg jTi)} P

N

i51

8><
>:

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

i

q exp

"
2(Mi 2Ti)

2

2s2
i

#9>=
>;p(a,Vmax,m, fs2

dg) , (1)

where p(a,Vmax,m, fs2
dg) is the prior probability den-

sity function (pdf) for the parameters/variances and

p(a,Vmax,m, fs2
dg jTi) is the posterior density for the

parameters/variances. Uniform priors were assumed

for the drag parameters and Jeffreys priors for the vari-

ances s2
d.

TheMonte Carlo step can be avoided if one is satisfied

with only the mode of the posterior and an approxima-

tion to the spread around it: simply maximize the pos-

terior density, or equivalently, minimize the negative of

its logarithm:3
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where Jd is the misfit cost for day d, the ln(s2
d) terms

come from the normalization factors of the Gaussian

likelihood functions and from the Jeffreys priors.4 The

expression for Jd is

Jd(a,Vmax,m,s2
d)5

1

2s2
d

�
i2I

d

[Mi 2Ti]
2 , (3)

where Id is the set of nd indices of the observations from

day d.

The minimization of the cost function [Eq. (2)] will be

solved iteratively using an optimization algorithm that

requires two iteration loops: an outer loop based on

Newton’s method to update the search directions, and

an inner loop to find the cost function optimum along

this direction using Brent’s line-search algorithm (Brent

1973). The outer loop requires the gradient and the

Hessian of the cost function (Lawless et al. 2005; Fletcher

1987; Avriel 1976), which are simple to obtain because of

the polynomial nature of Mi (see below) and the explicit

dependence on s2
d. Expressions for the components of

the gradient are

�
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Similar expressions for the elements of the Hessian

matrix can easily be obtained by differentiating these;

for brevity they are not shown.

We sketch below the PC surrogate’s principal features

since it is central to the gradient calculations. The PC

surrogate is essentially a truncated polynomial series

expansion of the following form:

M(x, t,a,Vmax,m)¼: �
P

k50

M̂k(x, t)Ck(a,Vmax,m) , (6)

where M̂k are the series coefficients [see Winokur et al.

(2013), Sraj et al. (2013), and Alexanderian et al. (2012)

for how they are computed and how the series accuracy

can be verified]; P is finite and depends on the trunca-

tion strategy adopted; and the functions Ck (a, Vmax, m)

form an orthogonal basis of an underlying (a, Vmax, m)

probability space. For the present case of uniform

3The 2ps from the normalization of the likelihoods do not

contribute to the maximum and can be ignored. Also, if the max-

imum is within the support of the uniform priors for the drag pa-

rameters, those priors also contribute only constant terms that can

be neglected. However, the maximum may be on the boundary of

that support.
4 The Jeffreys prior for the variance of a Gaussian is inversely

proportional to that variance: p(s2
d)5 1/s2

d for s2
d . 0 and 0,

otherwise.
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distributions, the basis functions are products5 of

univariate Legendre polynomials (Le Mâıtre and Knio

2010). This series representation model is used to com-

pute gradients necessary for the optimization algorithm;

thus

�
›M

›a
,

›M

›Vmax

,
›M

›m

�
5 �

P

k50

M̂k(x, t)

�
›Ck

›a
,
›Ck

›Vmax

,
›Ck

›m

�
.

(7)

Since the basis functions are products of Legendre

polynomials, analytic expressions for the derivatives can

be easily obtained (Alexanderian et al. 2012). Once the

coefficients M̂k are available, all that is required is dif-

ferentiating the basis functions and summing the series

in Eq. (7) to evaluate the gradients in Eq. (4).

Note that elements of both the gradient and the Hes-

sian of the cost function require differentiating the model

counterparts of the dataMi. As these are polynomials of

the drag parameters (Sraj et al. 2013; Alexanderian et al.

2012), their differentiation is straightforward. This is

where using a polynomial approximation to numerical

simulations is extremely valuable. Without them the

gradient would have to be computed using an adjoint

code constructed specifically for the model that produced

the simulations, would have required significantly greater

computational expense than is required to evaluate the

polynomial-based gradient, and the Hessian would be

even more expensive to obtain.

3. Results

The optimal drag parameters obtained by the varia-

tional formulation are presented and discussed in this

section. These values are compared to those reported in

Sraj et al. (2013). Posterior distributions for the drag

parameters and variances using the two approaches are

also presented and compared. The reader is referred to

Sraj et al. (2013) and Winokur et al. (2013) for more

details concerning the AXBT data and the surrogate

construction.

The iterative minimization algorithm relied on a com-

bination of Newton’s method and on Brent iterative line

searches. The l2 norm of the cost function gradient was

used as a stopping criterion with a tolerance of 1025 for

the outer iterations and 1022 for the inner iterations. The

initial guess was taken as the middle of the interval6

over which the prior was assumed uniform for each

parameter7 (Sraj et al. 2013). A total of 16 outer iter-

ations and 126 inner iterations were needed to reach

the optimal solution. Figure 1 shows the evolution of

the cost function decrease jDJ j between consecutive

outer iterations. The first 11 outer iterations exhibit

large jDJ j with commensurate decreases in the cost

function itself; jDJ j decreases rapidly beyond the 12th

iteration and reaches 10210 at the end of the 16th it-

eration. The contour plots in Fig. 2 show the trajectory

taken by the optimal parameters at the end of each

outer iteration, and reveal narrow valleys along the two

directions Vmax and m.

The optimal values of a, Vmax, and m obtained at the

end of the 16th iteration are: 1.0289, 34.0314ms21, and

21.01953 1025, respectively. The optimal values ofa and

Vmax are in agreement with the maximum-a-posteriori

(MAP) values obtained using the MCMC approach (Sraj

et al. 2013) (1.0267 and 34.0190, respectively).8 The opti-

malm, however, is not in agreement with the MAP value

of20.43943 1025 reported in Sraj et al. (2013). This is no

cause for concern as the MCMC analysis showed the

AXBTdata to be uninformative with regard tom; a closer

inspection of the present uncertainty in m (see below)

FIG. 1. The change in the cost function jDJ j between consecutive

outer iterations.

5 The 3D basis function is the product of 1D basis functions; for

example, Ck (a, Vmax, m) 5 La(a)Lb(Vmax)Lc(m), where La(a),

Lb(Vmax), andLc(m) are the usual Legendre polynomials of degree

a, b, and c in the variable a,Vmax, andm, respectively. Note that the

polynomial’s argument can be mapped onto the standard interval

[21, 1] on which Legendre polynomials are defined by a linear map.

6 0.4# a# 1.1, 20#Vmax# 35ms21, and23.83 1025#m# 0.0.
7We have repeated the analysis starting from a different initial

guess. The computations showed that the iterations converged to

the same optimum. This is not surprising because in the present

case the posterior distribution is unimodal.
8 The MCMC was reran for 1 000 000 000 iterations to confirm

the MAP values.
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corroborates the conclusion of the MCMC analysis. The

optimal hyperparameters s2
d are listed in Table 1 along

with the MAP values; the comparison shows a perfect

agreement between the results of the MCMC and varia-

tional approaches.

Although variational methods do not deal directly

with the parameters’ full posterior distributions, it is still

possible to gauge the uncertainty in their estimate. This

uncertainty gauge requires two key elements: an as-

sumption that the parameters’ pdf can be reasonably

approximated with a Gaussian distribution, and access

to the error covariance matrix. The assumption that the

observation errors in the AXBT data are random and

normally distributed, allows us to estimate this error

covariance matrix as the inverse of the Hessian matrix

of the cost function (Gejadze et al. 2011; LeDimet et al.

2002; Thacker 1989). Furthermore, the square root of

the diagonal elements of the error covariance matrix is

a measure of the spread (single standard deviation) of the

marginal posterior. The PC-provided Hessian is then all

that is needed to construct the Gaussian posterior.

The computed spreads of the drag parameter were

found to be: 0.0058, 1.2754, and 3.5214 3 1025 for a,

Vmax, and m, respectively, and their corresponding pre-

sumedGaussian posteriors are shown in Fig. 3 (top) along

with the posteriors obtained from the MCMC sampling.

The following remarks can be made:

d The Gaussian a posterior matches quite well the

MCMCposterior for which the assumption ofGaussian

statistics holds.
d The Gaussian Vmax posterior, however, is rather differ-

ent from theMCMC prediction. First, it fails to capture

the MCMC posterior’s heavy tail. Second, the varia-

tional estimate of the spread is only half as much as the

MCMC estimate (again, this could be due to the heavy

tail of the MCMC Vmax posterior). Third, the varia-

tional spread suggests that values outside the range of

the original prior are possible.
d The Gaussian posterior for m is uninformative as the

spread is large relative to the prior range, essentially

mirroring the MCMC conclusion.

FIG. 2. Contour plots of normalized cost function J /J 0 along constant (left) Vmax and (right) m surfaces. The

dashed lines show the trajectory of the parameters at the end of each outer iteration, and reveal the last four iterations

to be directed along the Vmax and m directions.

TABLE 1. Optimal parameters and hyperparameters and their spread calculated using variational and MCMC approaches.

Parameter

Method

Variational MCMC

Optimal Spread MAP Spread

A 1.0289 0.0058 1.0267 0.0064

Vmax 34.0314 1.2754 34.0190 2.4354

M 21.0195 3 1025 3.5214 3 1025 20.4394 3 1025 1.0824 3 1025

s2
1 0.6554 0.0637 0.6536 0.0655

s2
2 0.5712 0.0435 0.5699 0.0445

s2
3 0.5522 0.0407 0.5578 0.0418

s2
4 0.6684 0.0446 0.6742 0.0455

s2
5 0.9990 0.0686 1.0074 0.0702
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d The s2
d spreads match very well those obtained from

the MCMC calculation; furthermore, their MCMC

posterior is quite close to aGaussian shape as shown in

the bottom rows of Fig. 3.

In summary the present posteriors are, by and large, in

agreement with those obtained after the MCMC sam-

pling. The main discrepancies can be traced back to ei-

ther non-Gaussian-like posteriors, or to a parameter’s

insensitivity to the data.

4. Discussion

This article’s main message concerns the effective

use of the PC surrogate to estimate the gradients of

a numerical model. The success of this methodology in

the context of the present inverse problem begs the

question whether it could be useful in other problems

where gradients are needed (e.g., data assimilation), and

whether there are any efficiencies to be gained. Here we

discuss qualitatively the similarities and differences be-

tween a traditional adjoint-based gradient calculation

and the computations performed here.

Adjoint-based methods are considered efficient be-

cause the gradient calculation is independent of the

number of control parameters (Talagrand and Courtier

1987; Courtier and Talagrand 1987, 1990; Thacker 1991).

Each gradient calculation requires a single simulation of

the forwardmodel, and a single simulation of the adjoint

model backward in time. The computational cost, how-

ever, can be substantial as the backward integrations can

be equivalent to several (2–5) forward model runs (Baur

and Strassen 1983; Griewank and Walther 2008). In the

present experimentwhere the descent algorithm required

16 outer iterations and 126 inner iterations, the compu-

tational cost would have amounted to 158–206 HYCOM

runs.

The computational cost of the PC calculations is dom-

inated by the number of HYCOM simulations needed to

determine the series coefficients. These coefficients are

computed by evaluating multidimensional integrals in the

(a, Vmax, m) space through numerical quadrature. Each

quadrature sample requires a HYCOM simulation and

thus the cost scales linearlywith the number of quadrature

pointsQ. In turnQ depends on the type of quadrature, on

the number of uncertain variables, and on the truncation

strategy.9 Since series truncation and quadrature sam-

pling impact the approximation properties of the series

and its computational cost, the present work relied on an

FIG. 3. Posterior probability distributions for (top) drag parameters and (bottom) variancess2
d at selected days using variationalmethod

and MCMC from Sraj et al. (2013). The vertical lines correspond to the MAP values determined using MCMC and optimal parameters

using the variational method.

9 The multidimensional form of Gauss-type quadrature would

require Q 5 (p 1 1)3 for the three variable case; its cost grows

exponentially with the number of variables. Smolyak (Smolyak

1963; Petras 2003; Gerstner and Griebel 2003) sparse quadrature

offers an attractive alternative for high-dimensional integrals.
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adaptive pseudospectral projection to build the series and

to perform the quadrature, so that accuracy was guaran-

teed at a minimal computational cost (Constantine et al.

2012; Conrad and Marzouk 2013; Winokur et al. 2013).

The adaptive procedure (see the appendix for additional

details) required 67 samples only to construct the series to

within a specified tolerance. No additional simulations

were needed for the optimization proper, all that was

required was to develop the differentiation formulas for

the basis functions, and summing the appropriate series.

Unlike adjoint calculations, however, the number of

ensemble members strongly depends on the number

of control parameters, and on the quadrature adopted.

Furthermore, the surrogate delivers the model depen-

dence on a subset of the variables.

A major drawback of traditional adjoints is the sub-

stantial upfront investments necessary in developing

and maintaining adjoint codes for large general cir-

culation models. Although automatic differentiation

(AD) tools and adjoint compilers can help mitigate this

cost (Giering and Kaminski 1998; Tber et al. 2007;

Bischof et al. 1992; Zedler et al. 2012), a substantial

amount of manual intervention is still necessary. Ad-

ditionally, consistency between the forward model and

its adjoint code dictates that modifications and up-

grades to the forward model be propagated to the ad-

joint code as well, thus compounding the maintenance

burden. This naturally leads one to explore approaches

that overcome such burdens. For instance, Cao et al.

(2007) and Altaf et al. (2013) have recently explored

the use of a proper orthogonal decomposition/reduced

model approach to determine an approximate adjoint.

Similar to the present methodology, the approach in

Altaf et al. (2013) is based on an ensemble of forward

model runs, which effectively avoids the drawbacks of

traditional adjoint techniques. On the other hand, fun-

damental differences in the construction exist, namely,

regarding the selection of the ensemble, which in the

present approach enables us to establish a global surro-

gate representation, and to estimate the spread around

optimal parameters, namely, through the Hessian of the

surrogate.

In summary the PC-based approach offers an at-

tractive solution to parameter identification problems

when the following issues are relevant: the problem

requires a detailed exploration of a relatively low-

dimensional parameter space, an adjoint model is not

available for the complex forward model, the optimi-

zation solution requires access to the Hessian and/or to

a global view of the cost function (e.g., to identify local

minima), and more detailed information about the

posterior distribution is required than just its center

(e.g., spread).
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APPENDIX

Truncation Strategy

Truncation strategy is concerned with the number of

terms to retain in the series to guarantee its accuracy and

on the series termination in a multidimensional space

(akin to spherical harmonic truncation in spectral atmo-

sphericmodels or polynomial truncation in finite-element

models), that is, the degree of the highest polynomial

retained along each uncertain dimension with terms like

aaVb
maxm

c. A rectangular (isotropic) truncation uses max

(a, b, c) # p, where p is the maximum degree allowed in

any one variable; in this case the total number of terms in

the series is P1 15 (p1 1)N, where N is the number of

uncertain variables. A total order truncation would en-

force a1 b1 c# p [akin to triangular truncation in finite

elements; the triplets (p, 0, 0) and (0, p, 0) and (0, 0, p)

would be included for example but not (1, p, 2)]; the

number of terms would then be P1 15 (N1 p)!/N!p!

(Le Mâıtre and Knio 2010). An anistropic truncation

would use a different maximum order along each di-

rection because, for example, the lower-order terms are

enough to describe the dependency of M on the in-

dependent variables (e.g., M varies linearly with m but

like the sixth power of a). In the present instance an

adaptive strategy was used to decide on the maximum

order retained along each direction. The refinement cri-

teria was an area-averaged SST that was monitored to

determine which terms in the series were contributing

most to its variance; once these terms were identified the

series and sampling were refined along the most dominant

direction. The adaptive algorithm required 6 refinement

steps in the present study, resulting in 67 independent

realizations withmore sampling along the a parameter as

a result of its larger impact on the SST variance. Formore

details on truncation strategies in the adaptive algorithm

please see Gerstner and Griebel (2003), Conrad and

Marzouk (2013), Winokur et al. (2013), Sraj et al. (2013),

and Constantine et al. (2012).
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